3.4 Example: Microphone cable surface area and normal (orthogonal walls)

A microphone Q is attached to three pegs A, B, and C by three cables. All three peg locations and the
microphone location from point N, are known. The surface area A| of the triangle formed by points A,
B, and @ and a unit vector U perpendicular to the surface area are to be determined.

B

Al -2 202m B s e Lt i il % Quantity Vahi
: Distance from A to B 20 m
:a Distance from B to C 15 m
ny s Distance from N, to B S m
5 Q’s horizontal measure from N, along BC 7m
\(f—)_‘. N e = (Q’s vertical measure from N, i.e., QS hei_g_ht above N, [ 5m
o Teeemm 7 omm- ;!{’ ()’s horizontal measure from N, along BA 8 m

Step-by-step solution to find ]AI and u:

e Form (J's position vector from N, (inspection): $Q/MNo — 7R, + 5ny + 81,
Form B’s position vector from N (inspection): § N 81y
Form B’s position vector from A (inspection): £4/B = 204,
e Form (Q’s position vector from B (vector addition and rearrangement):
i:Q/B _ -l-:Q/NO _ gB/No  _ THS _3ﬁy + 87,
55 o= x A = A = ~ ~ ~ ~ s P~
e The “vector area’ is A = %r‘I/B xF9/B = %(20nz) X (7Tox + -3y + 810,) = 300k + 70y,
e The magnitude of A is the area, i.e., ‘A‘ = /302 + 702 = 76.16
e The unit normal i in direction of A is T = % = 0.3941, + 0.919n,

3.5 Proof of sine addition formula with vector cross-products

The following figure shows a generic triangle App,g, that has one of its angles divided into two angles,
namely a and 3. Two right-triangles, namely App,q, and Aog,r,, have been constructed as a geometrical
starting point for the proof that follows and as a means to provide definitions for cos(a), and cos(f3).

Note: Starting construction courtesy of Dr. Alex Perkins.

The areas of triangles App,r,, Aopr,g, and Ao, R, are

AreaAopp, g, = %|0?2x0ﬁ2| = %|O_]?’2| |Oﬁ2! sin(a + )

- o 1, = T
AreaAop,g, = % |OP; x 0Q2| o ‘OPz‘ ‘OQ2| sin(a)

i o Lo e
Arealog, R, = 3 |0Q2 x ORy| = > |0Q2| |ORz| sin(B)
Using Area Aop,r, = Area Aop,o, + AreaAog,r, and the definitions of cos(e) and cos(f) gives

|O_P2! |O_R2‘ sin(a+ () = \0-]‘:)2{ \O_Qz‘ sin(a) + LO_Qz‘ ‘O_Rﬂ sin(f3)

: o T o) 0Q2|
sin(a+ §) = _—‘Ofi2| sin(a) + \0_1‘32| sin(f3)

sin(a + ) cos(3) sin(a) + cos(a) sin(53)

Copyright © 1992-2014 by Paul Mitiguy m 26 Chapter 3: Position vectors and vector geometry

Chapter 4

Vector basis

Why use a vector basis? (see examples in Hw 1, 2, 3)

Unit vectors are sign-posts, e.g., up, down, left, right, etc. A vector basis consist-
ing of three orthogonal unit vectors provide a way to “give directions” in 3D space.
Conventions for specifying unit vectors depend on the analyst and field of study, e.g..
biomechanics, aeronautics, vehicle dynamics, statics, ete.*

The vectors a;, 8y, a3 shown right form a three-dimensional vector basis. Notice the
basis is right-handed,” but is not an orthogonal basis’ or unitary basis.t

“The basis is right-handed (or dextral) because a; x @ - az > 0.
"An orthogonal basis has mutually perpendicular (orthogonal) basis vectors (90° to each other).
“A wnitary basis has unit basis vectors.

Q/© _ see Chapter 3).

One vector basis is useful for simple directions (e.g., point @ from point O via T
Two vector bases are useful for relative orientation (e.g., aircraft A in Barth E via *RE - see Chapter 5).

Multiple vector bases are useful for multibody force and motion analyses.

* For example, a vector basis for Earth’s surface is NED (locally North/East/Down). A basis that orients Earth relative to
other celestial objects is ECEF (Earth-Centered/Earth-Fixed) with a unit vector pointing from Earth’s center to 0 longitude

and 0 latitude, a second unit vector pointing to geometric North, and a third unit vector perpendicular to the other two.

4.1 What is a vector basis? A
A wvector basis is a set of linearly independent vectors that span a space (e.g., the 3D space a
in which we live). Each linearly independent vector is called a basis vector for the space. /=

a3

It is conventional to use a right-handed basis and common to use a orthogonal uni-
tary basis.” A 3D right-handed orthogonal unitary basis has various visual representations
(shown to the right). Note: When a3 is absent, it is implied by the right-hand rule.

Note: A set of three vectors with an intrinsic order, e.g., a;, as, asz, is called right-handed
when 3d; x 8y - as > 0. Alternately, the set is left-handed when &, x a; - az < 0.
The orthogonal unit vectors ay, ay, a, are right-handed when ay x a, = a,. —~

“To physically demonstrate an orthogonal vector basis, hold your right hand with the thumb, forefinger,
and middle finger pointing in orthogonal directions. Chapter 5 deals with rotation matriz and is sum- a
marized with two hands (each with a vector basis) and the question “how do I relate two vector bases”

4
f. = — e R
A a, % /ﬁa‘y &
Right-handed basis Right-handed basis Left-handed basis
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4.2 Rigid and non-rigid bases P&

When the magnitude of each basis vector in a vector basis is constant and the 4 i \dza
angles between bases vectors are constant, the basis is a “rigid vector basis”. o . >P3
When the magnitude of a basis vector in a vector basis is variable or an angle 5 1# .= Gl

between two basis vectors are variable, the basis is a “non-rigid vector basis”.

For example, the previous figure shows distinct non-collinear points P, P», P3 and the non-zero distances
between them djo, do3, d3;. One way to construct a basis is from the vector a; directed from P to P,
the vector &, directed from P to 3, and a3 = &;x as. This is a rigid vector basis if all the distances
are constant whereas it is a non-rigid vector basis if dyy is variable.

Note: Even though a rigid vector basis can sometimes be associated with a unique reference frame, a reference frame
contains an infinite number of vector bases. For example, a rigid basis consisting of &;, a2, a3 may be fixed in a reference

frame A. However, one is free to fix other rigid bases (e.g., 8x, 8y, 8;) in A.

Note: A reference frame is a rigid object that can be constructed with as few as three non-collinear points whose distance
from each other are constant. Reference frames are discussed in Chapter 7 and differ from a rigid basis in that at least one
point must be fixed in a reference frame whereas a rigid basis is not associated with a point. Differences between reference

frames and rigid basis are most relevant when dealing with translational kinematics (e.g., velocity and acceleration).

4.3 Non-orthogonal basis

There are situations in which it is sensible to use a non-orthogonal basis. For example, a non-orthogonal
basis plays an important role is in determining the volume, centroid, and inertia properties of a tetrahedron,
a shape used by CAD/CAE programs for constructing nearly any geometrical object.

Non-orthogonal bases are also useful in motion studies (e.g., gait studies) involving irregularly-shaped
objects (e.g., human bones) that require markers (devices which track the location of a single point) on
easily-identifiable, physically-meaningful locations (e.g., anatomic landmarks). It is easier (and more
physically meaningful) to construct a non-orthogonal basis out of basis vectors which are aligned with
markers of interest (e.g., pointing from one marker to another marker).

4.4 Creating various 3D bases from two non-parallel vectors

—
a
One way to construct a 3D vector basis from two non-parallel 2
vectors a; and as is with: &;, &, and 33 2 a; x Aas.
B
One way to construct a 3D right-handed orthogonal basis - &y

from 8; and 38, is with: a;, a3 x &;, and aj3.
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4.5 Concept: What is the vector vs. how is it expressed

The following figure shows a particle @ sliding along a straight track B. Track B spins in a reference frame
N. A spring with linear spring constant k connects ) to point N, (N, is fixed in both B and N).
Vector bases Ty, Ny, N, and by, by, b, are fixed in NV and B, respectively with:

e n, directed horizontally right & " :
~ N, m
e 11, = b, parallel to B’s axis of rotation in N T .

e b, directed along the track from N, to @

Using the geometry of a right triangle and definitions of sine and
cosine, unit vectors 1y and Ny are related to by and by as

= cos(f)nx + sin(f)n,

oY oY
: W

v = -sin(f)nx + cos(8)ny

The point of this example is to clarify two distinct concepts:

e What is the vector (the name to the left of the equal sign =)
e How is the vector expressed (the expression on the right of the equal sign =)

T (Q’s position vector from N,) can be expressed in various bases.

Expressed in terms of by, by, b,. Expressed in terms of ny, ny, n,.

¥ = b, T = x[cos(f)ny + sin(f)ny]

F (the spring force on Q) can be expressed in various bases.

Expressed in terms of Bx, Ey, Bz. Expressed in terms of Dy, Ny, Ny
F = -kxby F = -kzcos(6)n, + sin(f)ny]

BGQ (s velocity in B) can be expressed in various bases.

Expressed in terms of by, By, BZ. Expressed in terms of Ty, Ny, 1,.
BgQ — ;b B5Q = i[cos(d) Dy + sin(f)ny]

Ng@ (s velocity in N) can be expressed in various bases. Note: "v9 # B3R These are different vectors.

Expressed in terms of BX, B_\,, Bz. Expressed in terms of ' Tiz, Dy, Do .
NgQ — ib, + 3”96}: N9 = [# cos(d) — x 8 sin(0)] Nk + [& sin(f) + x 0 cos(0)] 0y

The important point to remember is: A vector is not changed by expressing it in a different basis.

Pictures and renderings of DARPA’s Revolutionizing Prosthetic hand.
Courtesy of HDT Engineering Services, Inc. and Kinea Design, LLC.
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4.6 Expressing a vector

Given an arbitrary vector v and a set of three non-coplanar (but not necessarily orthogonal
or unit) vectors @;, ag, a3, one can express v in terms of a;, apz, a3 as

Vv =03 + vgay + wvsas (1}
where w1, v9, v3 are scalars quantities (e.g., numbers or functions of time ¢) equal to'

Vv« (39 x a v.(agx a ¥ o« (Ajaa
v o= — (aig E:g) vg = < (_? j) vg = = (j _.2) (2)
a; -+ (dp x az) dy - (&3 x ap) az - (&, x dy)

When &y, &y, a, are orthogonal unit vectors, equation (2) simplifies to

—~ — —~

v = V » 8y vg = V - ay U3 = V o+ A, (3)

and wv7, vo, vg are called the ay, ay, a, measures of v.”

7o prove equation (2), dot multiply both sides of equation (1) with &z X &3 toget V- (&2 x &83) = v a; - (& x 83).
Isolate vi to arrive at the first expression in equation (2). Proceed similarly to find vz and vs. 2
Note: Since &;, &, &3 are non-parallel, non-coplanar vectors &, - (&2 x &3) # 0.

% Measures of ¥ are scalars whereas components of ¥V are vectors.

For example, the a, measure of ¥ is v; whereas the ax component of ¥V is (V-a,)a, = v1a..

4.7 Expressing a vector basis in terms of another vector basis

One set of basis vectors (e.g., by, ba, bsz) can be expressed in terms of another set of basis vectors (e.g.,
a1, ag, a3) with the scalar functions Rj; (i.j=1,2,3) as either

by = Ry 8 + Rip 8 + Ri3 33 by Ry Ry Ris a;
by = Rg; 81 + Rgy 8y + Rag &3 or By | = | Roi. Ros Roa a;
b3 = R3; a1 + R3 @ + Raz ag by R31 R3z Rss a;

When a; and Ei (i=1,2,3) are both right-handed, orthogonal, unitary bases, the matrix relating Bi to ay is
called the PR?® rotation matriz and has many special properties as described in Chapter 5.

4.8 Optional*: The language, history, and culture of “left” and “right”

Language Word Translation Meaning More info

English right  right correct, “you are right” Engineers like being “right”
English left left “left out”

French right  droit adroit means to the right or skillful

French left gauche socially clumsy http://www.gauche.com
Latin right dexter nimble, dexterous

Latin left sinistre dark and mysterious

Greek right  orthos root of the word orthogonal Also dexion

Greek left skalos awkward, ill-omened

Left-handers include Alexander the Great, Julius Caesar, Leonardo, Michelangelo, Raphael, Newton, Curie, Henry Ford,
Napoleon, and a disproportion of Nobel-prize winners and recent U.S. presidents, including Gerald Ford, Ronald Regan
(ambidextrous), Bill Clinton, and Barack Obama. One ultrasound study showed 90% of in-utero babies sucking their right
thumb. In a study of 100,000 students taking the SAT (Scholastic Aptitude Test), 20% of the top-scoring group was left-
handed, twice the 10% rate of left-handed students in the general population. In 2007, gene LRRTM1 was associated with

both left-handedness and an increased chance of schizophrenia.
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4.9 Optional™: Coordinate system vs. vector bases

A coordinate system is a set of scalar quantities, typically angles or distances, used in specifying the
location of points, curves, surfaces, and solids. A coordinate is a single scalar in the set.! A generalized
coordinate is a scalar quantity that is useful in locating points, curves, surfaces, and solids but is not
necessarily associated with a coordinate system such as a Cartesian, cylindrical, or spherical® coordinate
system.? In other words a generalized coordinate is a more general type of coordinate. Generalized coor-

dinates play an increasingly important role in geometry and motion. A%
Coordinate system Method for locating points
Cartesian coordinate system 3 distances measures, e.g., (z,y, z) 0 X

Cylindrical coordinate system 2 distances and 1 angle, e.g., (.0, 2)

Spherical coordinate system 1 distance and 2 angles, e.g., (p, 0, ¢) Z

The most famous coordinate system is a rectangular Cartesian coordinate Cartesian coordinate system

system which consists of three mutually-perpendicular lines, called coordi- —~
nate axes, along which measurements are done and which all intersect at ay
one point called the origin. The differences between a Cartesian coordinate ~
system and a vector basis are highlighted below.® ﬁ"z a;‘

?It is usually more efficient to use generalized coordinates and vector bases
than coordinate systems. Vector basis

e A Cartesian coordinate system has an origin and a set of coordinates. A basis does not.

e A Cartesian coordinate system has coordinate axes along which measurements are done.
A basis does not.

e A Cartesian coordinate system does not intrinsically have a basis - although one can easily be con-
structed by introducing unit vectors that are oriented parallel to the coordinate axes and whose sense
is determined by the positive direction along the coordinate axes.

Note: A wector basis is defined as a linearly independent set of vectors that “span a space”.

A set of vectors &;, a,, 85 is said to “span 3D space” (e.g., Earth’s 3D space) if and only if any arbitrary vector ¥

in 3D space can be written as a “linear combination” of d,, 8,, d;. A linear combination of vectors a,, a,,
g

T
8y is defined as ) v; & where v; are scalar quantities. As shown in Section 4.6, if &, d,, d; form a 3D vector
t=1

basis, any arbitrary 3D vector can be written Vv = v, 8; + v, 8, + w3 3.  One way to form a basis is by “guess
and check”. As shown in Section 4.6, one may guess &,, 8, d3 form a 3D basis. The solution for v;, v., v; checks
if and only if &, (8, x 83) # 0, which means &,, &, & are non-coplanar vectors.

'A coordinate may be a variable, constant, or specified function of time.

2A spherical coordinate systemn is useful for describing the location of a point on a sphere. When studying the motion of
particles moving on the Earth, e.g., the geology of a particle in a river, it is helpful to use a spherical coordinate system because
p is a constant and the number of variables in the analysis is decreased from three to two. Using a Cartesian coordinate system
to study a particle moving on a sphere introduces an inherent relationship between z, y, and z, i.e., z? +y* 4+ 2% = constant.
Similarly. using a polar coordinate system necessitates an inherent relationship between r, @, and z, i.e., r? + z? = constant.
However, Homework 5.22 shows that spherical coordinates have an inherent singularity at the “North” and “South” pole.

30ther related coordinates include curvilinear, Plucker, canonical, intrinsic, parallel, elliptic, ellipsoidal, prolate spheroidal,
oblate spheroidal, conical, parabolic, paraboloidal, toroidal, bispherical, biangular, etc.
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4.10 Optional**: Rigid frame and transformation matrices ay

A rigid frame is the combination of a rigid vector basis and an origin point. A X, s
rigid frame is a useful measuring device for kinematics and multibody dynamics. For
example, the figure to the right shows a rigid frame A having right-handed orthogonal

unit vectors ay, ay, a, and an origin As.

“:;\o
|

Optional**: Transformation matrices (for robotics, graphics, s )

The following figure shows two rigid frames A and B. L N 5
Rigid frame A has right-handed orthogonal unit vectors ax, ay, a, and origin A,. by
Rigid frame B has right-handed orthogonal unit vectors by, by, b, and origin B,. Bx
i 3}- .BO/'
The 4x 4 transformation matriz ATB  gtores the orientation of
Aand B ina 3x3 *R" rotation matric (-dt::'scribed in Chapter 5) .Aﬂ 3, b,
and stores the 8y, Ay, a, measures of By’s position vector from Ag —_—
in a 3x1 sub-matrix as shown below. 'é
(G, - by 8x- by 8y-:b, | 8 pB/
: N ~ .7 PO
aRb ] |:F Bn/!'lo] a\: P bx av . 'l)v a'\' » bZ a} Ok & / 4
‘ = S S I o
AP 2 = |& b B-by Eucbe |87 (4)
o
' 0 0 0 1
Numerical values representative of the schematic to the right by B
can be stored in a 4x4 transformation table, e.g., as X
o B,
s = .
ATB | b, by b, | #5/ ) v®
—
a, | 0.6958 -0.7165 0.0500 4.2 s F - B"
= Y q ) - 7
a, |0.7103 0.6968 0.0100 | 3.3 Aogr a.
a, |-0.1063 -0.0339 0.9938 1.2 A X
0 0 0 1 z

Optional*: Concatenating transformation matrices for rigid frames A, B, C, D

The 4x4 transformation matrix L)

\Bg/ T relates the orientation and position of rigid
=, f T
a, i

frames A and D and can be computed by

- * _-"l i ' 1 [) ic i S l belO .
T1> lll‘dl 1 11(,31:1011 as showi
A = AT \ E‘. 11 a( X ¢ S W W
l‘(:‘ 3, ‘ Z ! B ! C C Z D
Z /

Optional™: Inverse of a transformation matrix

. bpa : ial pr by bRa _ (aRb) (aRb)T
Since rotation matrices are orthogonal, "R* has the special property =
Using this special rotation matrix property, th‘e bpa bga { 2B /_40]
inverse of a transformation matrix can be effi- it o ( ATB)‘I _ a
ciently calculated as shown right (more efficient ; ‘ ;
and accurate than inverting a 4x4 matrix). 00
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Chapter 5

Rotation matrices 1

The figure to the right shows two right-handed, unitary or-
thogonal bases a and b whose basis vectors are ay, ay, a,

and b b bz, respectively. Orientation between a and
b can be debcnbed with a 3 x 3 rotation matriz *R°, whose

elements aR}j’- (i.j = x,y,z) are defined in equation (1). Y A~ = o o

. ) “Ri = & - b; = cos Z(a;,b;)
The definition of dot-product in equation (2.2) shows “‘Rg is (2.2) (1)
equal to the cosine of the angle between a; and bj.“' (b7 = x¥%32)

% A rotation matrix is also called a direction cosine matriz whose elements are direction cosines.
Section 5.4.1 gives an example of calculating angles from a rotation matrix. Chapter 8 shows the orientation of a in b can be

characterized in various ways, including Euler angles, Euler parameters (quaternions), and Rodrigues parameters.

A rotation matriz R is an orthogonal matrix, which means = =
the transpose of R is equal to the inverse of R, i.e., RT = R™\. bRE = [(%R") ™ = {%RE) (2)

Section 5.4.2 gives an example of calculating the inverse of a 10t'1110n matrix.

Since rotation matrices are orthogonal, it is convenient to store apb b b b
i < ; 3 5 : x y zZ
the orientation information in a rotation table that can be read = — —
horizontally or vertically.® ay |ax-bx ax-by ay-b, 3)
“Section 5.7.1 gives the proof of equation (2). If one or both of the bases ay |ay-by ay-by ay-b,
are non-orthogonal, a rotation matrix (not a rotation table) is used because = =~ .5 . o .r
. i s i a; |a;*by a,-by, a,-b,
the inverse of a non-orthogonal matrix is not its transpose. “
The rotation matrix *RY can be formed by successive matrix
ultiplication of the #RP, PRC. & ‘R4 rotation matrices. p ;
multiplication of the #R°, PR®, and °R® rotation matrices apd — apb 4 bpc 4 cpd (4)
Section 5.5.4 gives an example of successive matrix multiplication.

5.1 Uses for the rotation matrix aRb (for geometry, statics, motion analysis, stress ...)

e Finding the dot-product between the unit vectors @; and bj, (i,i = x,¥,2)
e Calculating the angle between the unit vectors a; and b (i,7 = x,y.2)

e Calculating the dot-product or cross- product between a vector v and a vector W, each of which
may be expressed in terms of ay, ay, a, and/or b b b (e.g., see Section 5.4.3).

e Expressing a vector written in terms of ay, ay, a, in terms of by, by, b, (or vice-versa)
e Calculating other rotation matrices e.g., *RY = 2RP x PR % °RY [see equation (6)).

e Relating the column matrix representation of a vector v expressed in a vector basis a to its column
matrix representation in a vector basis b, e.g., [¥], = *R" [¥],
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