4.10 Optional**: Rigid frame and transformation matrices ay

A rigid frame is the combination of a rigid vector basis and an origin point. A X, s
rigid frame is a useful measuring device for kinematics and multibody dynamics. For
example, the figure to the right shows a rigid frame A having right-handed orthogonal

unit vectors ay, ay, a, and an origin As.

“:;\o
|

Optional**: Transformation matrices (for robotics, graphics, s )

The following figure shows two rigid frames A and B. L N 5
Rigid frame A has right-handed orthogonal unit vectors ax, ay, a, and origin A,. by
Rigid frame B has right-handed orthogonal unit vectors by, by, b, and origin B,. Bx
i 3}- .BO/'
The 4x 4 transformation matriz ATB  gtores the orientation of
Aand B ina 3x3 *R" rotation matric (-dt::'scribed in Chapter 5) .Aﬂ 3, b,
and stores the 8y, Ay, a, measures of By’s position vector from Ag —_—
in a 3x1 sub-matrix as shown below. 'é
(G, - by 8x- by 8y-:b, | 8 pB/
: N ~ .7 PO
aRb ] |:F Bn/!'lo] a\: P bx av . 'l)v a'\' » bZ a} Ok & / 4
‘ = S S I o
AP 2 = |& b B-by Eucbe |87 (4)
o
' 0 0 0 1
Numerical values representative of the schematic to the right by B
can be stored in a 4x4 transformation table, e.g., as X
o B,
s = .
ATB | b, by b, | #5/ ) v®
—
a, | 0.6958 -0.7165 0.0500 4.2 s F - B"
= Y q ) - 7
a, |0.7103 0.6968 0.0100 | 3.3 Aogr a.
a, |-0.1063 -0.0339 0.9938 1.2 A X
0 0 0 1 z

Optional*: Concatenating transformation matrices for rigid frames A, B, C, D

The 4x4 transformation matrix L)

\Bg/ T relates the orientation and position of rigid
=, f T
a, i

frames A and D and can be computed by

- * _-"l i ' 1 [) ic i S l belO .
T1> lll‘dl 1 11(,31:1011 as showi
A = AT \ E‘. 11 a( X ¢ S W W
l‘(:‘ 3, ‘ Z ! B ! C C Z D
Z /

Optional™: Inverse of a transformation matrix

. bpa : ial pr by bRa _ (aRb) (aRb)T
Since rotation matrices are orthogonal, "R* has the special property =
Using this special rotation matrix property, th‘e bpa bga { 2B /_40]
inverse of a transformation matrix can be effi- it o ( ATB)‘I _ a
ciently calculated as shown right (more efficient ; ‘ ;
and accurate than inverting a 4x4 matrix). 00
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Chapter 5

Rotation matrices 1

The figure to the right shows two right-handed, unitary or-
thogonal bases a and b whose basis vectors are ay, ay, a,

and b b bz, respectively. Orientation between a and
b can be debcnbed with a 3 x 3 rotation matriz *R°, whose

elements aR}j’- (i.j = x,y,z) are defined in equation (1). Y A~ = o o

. ) “Ri = & - b; = cos Z(a;,b;)
The definition of dot-product in equation (2.2) shows “‘Rg is (2.2) (1)
equal to the cosine of the angle between a; and bj.“' (b7 = x¥%32)

% A rotation matrix is also called a direction cosine matriz whose elements are direction cosines.
Section 5.4.1 gives an example of calculating angles from a rotation matrix. Chapter 8 shows the orientation of a in b can be

characterized in various ways, including Euler angles, Euler parameters (quaternions), and Rodrigues parameters.

A rotation matriz R is an orthogonal matrix, which means = =
the transpose of R is equal to the inverse of R, i.e., RT = R™\. bRE = [(%R") ™ = {%RE) (2)

Section 5.4.2 gives an example of calculating the inverse of a 10t'1110n matrix.

Since rotation matrices are orthogonal, it is convenient to store apb b b b
i < ; 3 5 : x y zZ
the orientation information in a rotation table that can be read = — —
horizontally or vertically.® ay |ax-bx ax-by ay-b, 3)
“Section 5.7.1 gives the proof of equation (2). If one or both of the bases ay |ay-by ay-by ay-b,
are non-orthogonal, a rotation matrix (not a rotation table) is used because = =~ .5 . o .r
. i s i a; |a;*by a,-by, a,-b,
the inverse of a non-orthogonal matrix is not its transpose. “
The rotation matrix *RY can be formed by successive matrix
ultiplication of the #RP, PRC. & ‘R4 rotation matrices. p ;
multiplication of the #R°, PR®, and °R® rotation matrices apd — apb 4 bpc 4 cpd (4)
Section 5.5.4 gives an example of successive matrix multiplication.

5.1 Uses for the rotation matrix aRb (for geometry, statics, motion analysis, stress ...)

e Finding the dot-product between the unit vectors @; and bj, (i,i = x,¥,2)
e Calculating the angle between the unit vectors a; and b (i,7 = x,y.2)

e Calculating the dot-product or cross- product between a vector v and a vector W, each of which
may be expressed in terms of ay, ay, a, and/or b b b (e.g., see Section 5.4.3).

e Expressing a vector written in terms of ay, ay, a, in terms of by, by, b, (or vice-versa)
e Calculating other rotation matrices e.g., *RY = 2RP x PR % °RY [see equation (6)).

e Relating the column matrix representation of a vector v expressed in a vector basis a to its column
matrix representation in a vector basis b, e.g., [¥], = *R" [¥],
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5.2 Rotation matrices and matrix multiplication

Two orthogonal (or non-orthogonal) unit bases are related with column matrices of unit vectors as

ay by by ay :
-~ ; = N bpa ~ i . bpa __ apb\~
ay = 2Rb I or by = "R | &5 where R* = ( R )

a, b, b, a,

Alternately, transposing the previous equation shows row matrices of orthogonal unit vectors are related by

[ 8 a]=[b B B|"” o b b, b ]=[a & a]|=® (5)

Optional**: Vector and dyadic measures and rotation matrices

As shown in Section 4.6, an arbitrary vector v can be expressed in terms

: ) P V = up8y + A, o uiay
of the right-handed orthogonal unit vectors a, ay, a, and the scalars - L b e
Uy, Uy, U» as shown to the right. Alternately, v can be e*{plesqed in V = 0:bx + 9yby + U:b,
terms of the right-handed orthogonal unit vectors bx, by b and the Ty Vg
scalars Uy, Uy, U,. As proved in Section 5.7.2, the scalars ¥, Uy, U, and Ty — bpa vy (6)
Vg, Uy, U, are related as shown in equation (6). 5 |, v |
A more compact form of equation (6) equates the column matrix repre-
sentation of ¥ expressed in basis a to the column matrix representation
of ¥ expressed in basis b as shown in equation (7).
Similarly, equation (8) relates the 3x3 matrix representations of a [

e ¢
dyadic D express in the a and b bases (proved in Section 16.2).

5.3 Rotation matrices - who cares?

In 2D (two dimensional) analysis, the orientation of a rigid body B in a
reference frame N can be characterized with a single angle, e.g., the “pen-
dulum” angle 6 shown to the right. Since B rotates in a plane perpendmula;
to n, = bz, 0 is defined as the angle from 1y to b with +b sense.

In 3D (three dimensional) analysis, the orientation of a rigid body B (e.g.,
a spiraling, wobbling, football) in a reference frame N (e.g., a stadium) cannot be
characterized by a single angle. One convenient way to measure the foot-
ball’s orientation in the stadium is with a rotation matrix.

“In 3D analysis, a rigid body can be oriented with: a single angle and a vector, or four
Euler parameters (quaternion), or three Euler angles, or a rotation matrix, or ...
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5.4 Simple rotation matrix examples

—~

5.4.1 Example: Calculating angles between unit vectors a,, a,, a, and b.. E\ b,

A rotalion table stores dol-products between unit vectors and makes it easy to calculate angles
between unit vectors. For example, RP stores &y - b, = 0.258819 in the & ay row and b column. Using
the definition of dot-product in equation (2.2), the angle between ay and bz can be calculated as shown
below.

agb by by b,

a, | 0.9622502 -0.08418598  0.258819 -‘

A, | 0.1700841  0.9284017  -0.3303661 B

a, [-0.2124758 0.3619158  0.9076734 é’a‘x """

£(35,b,) = acos(0.258819) = 75°
5.4.2 Example: Calculation of rotation matrix inverse

The following rotation matrix R relates two right-handed, orthogonal, unitary bases.
Since a rotation matrix is orthogonal, its inverse can be written down by inspection.

0.433  0.0580 0.8995 0.433 -0.25 -0.866
R = -0.25  0.9665 0.0580 = R = | 00580 0.9665 -0.25
-0.866 -0.25 0.4330 0.8995 0.0580 0.4330

5.4.3 Example: Forming and using a rotation matrix

The figure to the right shows a rod B connected to a fixed support A by a revolute
joint. Right-handed sets of orthogonal unit vectors ay, ay, a, and by, by, by, are
fixed in A and B, respectively. The PR? rotation matrix is given to the right.

This example shows how to use a rotation matrix, e.g., to express a vector in
another basis and perform dot-products and cross-products. For example, the by
row of the PR? rotation table allows by to be expressed in terms of ay, ay, a, as

bpa | &, a, g,
by = cos(f)a, + sin(f)a, be | cos(f) sin(d) 0
The &, column of PR?* allows &y to be expressed in terms of by, By, b, as by | -sin(f) cos(d) O
- ~ b, | 0 0 1
ay = cos(f) by — sin(f)b,
The dot-product B_y -d, is the element of PR? in the By row and a, column, i.e., By -ay = -sin(f).

A more complicated dot-product example computes

—~ —~

(8 + 28y) - (b + yby) = @ (@c-by) + y(@x-by) + 20 (& -By) + 2y(&-by)
= z [cos(f)] + y [sin(f)] + 2z [sin(f)] + 2y [cos(d)]
An example of doing a mixed-basis cross-product is
by X (28, 4+ yay) = [cos(d) B, + sin(8)dy] x (z8x + ydy) = [y cos(d) — = sin(f)] &,
A more complicated cross-product example computes
(ax + 238y) x (:c by + yB}) = {[005(9) +2 sin(0)] by + [2 cos(d) — sin(6)] E)} %
= {ycos(#) + 2 sin(f)] — z[2 cos(f) — sin(#)]} b,
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5.5 Example: Rotation matrices & matrix multiplication

Shown to the right is a rigid rod A connected to a fixed support N by a
revolute joint whose horizontal axis is parallel to the unit vectors ny = ay.
Rod A’s orientation in N is characterized by the right-handed rotation g4 ax.

Rigid plate B is connected to rod A by another revolute joint whose axis is
parallel to the unit vectors a, = f)z (B can rotate freely about A’s long axis).
Plate B’s orientation in N is characterized by the right-handed rotation gg b,.
Note: The B-to-A revolute joint is perpendicular to the A-to-NN revolute joint.

There are three sets of orthogonal unit vectors, fixed in N, A, and B,
respectively, namely Ny, Ny, 1, and ay, ay, a, and by, by, b.

This problem relates these three sets of unit vectors with rotation matrices.“

“Simple rotation matrices are formed using the definitions of sine and cosine (SohCah'Toa).

5.5.1 Example: Forming the simple rotation matrix *R"

: ; : : : A
The rotation matrix *R" relating the right-handed sets of orthogonal unit q
vectors ay, ay, a, and Ny, Ny, N, shown to the right is a “simple rotation ﬁz\
matrix’ because ay = Ny for the duration of A’s rotation in N.

To calculate ?R", it is helpful to redraw these vectors in the geometri-
cally suggestive way shown to the right. After using the definitions of sine R A
and cosine to express each of ay, ay, a, in terms of Ny, Ny, N, one can form Ax=I Ny
the *R" rotation table as shown below.

N N apn ny n, 1,
& =B A e 1 0 0
ay = cos(ga)ny + sin(ga)n, = & 0 co8{ga) o minl TN
a, = -sin(ga)ny + cos(gs)1n, 5 0 sin(gs)  cos(qa)

The rotation table makes it easy to form ?R", the rotation matrix relating ay, ay, a, to I, oy, Ny
Shown next, the rotation matrix "R? is quickly and accurately calculated by the transpose of *R".

E? B S 10 ¢ | Fad
a, | = °R"| ny or ay | = | 0 cos(ga) sin(ga) it
| a, B | a, | 0 -sin(qa) cos(qa) | | Dz |
[ iy PR T [ fix | 1 0 0 T Fail
n, | ="R"| a, or ny, | = | 0 cos(qa) -sin(qa) a,
| n, | &, | | 0, | 0 sin(ga) cos(ga) | | @ |

5.5.2 Hug rule (a pattern for quickly forming simple rotation matrices)

When: Two sets of orthogonal unit vectors by, by, b, and a, ay, a, are initially set so a;=b; (i=xv.2)
and b undergoes a simple rotation relative to a about one of b; =a; by an angle 6.

Then: The Bi row and @; column contain only 1 or 0 and the remaining elements of the rotation table
have the pattern show below right.

The + signis + if the unit vector is “hugged” (b, is between &, and &) cos(d) =+ sin(6)
or - when the unit vector is “left out in the cold” (b, is not between a, and
ﬁy). [Hug rule analogy courtesy of Dr. Mandy Koop].

+ sin(f) cos(6)
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5.5.3 Example: Forming the simple rotation matrix *R*

The rotation matrix PR? relating the right-handed sets of orthogonal unit ‘ng
vectors by, by, b, and ay, ay. a, shown to the right is a “simple ro- by

tation matriz® because b, = a, for the duration of b’s rotation in a.

To calculate PR?, it is helpful to redraw these vectors in the geomet-
rically suggestive way shown to the right. After using the definitions of A
sine and cosine to express each of by, by, b, in terms of &y, ay, a,, one BZ'—'az dy
can form the PR® rotation table as shown below. ‘

N N . R I)Ra ax ay az
by cos(gp)ax + sin(gp)ay Bx T e 0
b, -sin A, + cos a. = .
= (95) 8 (45) 8 by | -sin(gg) cos(gr) 0
bZ 52 o~

b, 0 0 1

5.5.4 Example: Rotation matrix multiplication to form °"R* = "R* % *R"

The rotation matrix PR" relating by, by, b, and Ay, fiy, 7, is formed as PR® = PR* x 2R",
‘ : 4

cos(qp) sin(gg) 0 1 0 0 cos(gg) sin(gg) cos(ga) sin(ge) sin(ga)
PR* = | -sin(gp) cos(ge) O | * | O cos(ga) sin(gs) = | -sin(gg) cos(gg) cos(ga) cos(gg) sin(g.)
0 1 0 -sin{qs) cos(qa) 0 -sin(g.a) cos(ga)
The PR" rotation table (shown right) is copied from bpgn n, a,

ﬁz.
its associated rotation matrix and is the starting } . .
=~ s « | cos(gs) sin(gg) cos(ga) sin(gg) sin(ga)

point for most relationships between by, by, b, 13
and @y, Ty, Hy. by | -sin(gs) cos(gr) cos(gs) cos(gp) sin(ga)
For example, reading the PR™ rotation table gives b, 0 -sin(ga) cos(ga)
First row: by = cos(gp) Ny + sin(gp) cos(ga) Dy + sin(gp) sin(ga) D,
First column: fi, = @ cos(gs) by + -sin(gg) Ey + b,

As shown below, the dot product by -Aﬁz is simply the element in the Bx row and 1, column of the PR™
rotation table and the angle between by and n, can be calculated via the definition of the dot-product.

by-fi, = | sin(gg) sin(qa) L(Bx,ﬁz) = acos [sin(gp) sin(qa)]

Rotation matrices are used for relative orientation such as the Soyuz spacecraft docking with the
international space station, or tele-robotic surgeries with needle/catheter insertion, etc.
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5.6 What is an angle?

is context-sensitive, e.g., depending on whether measurements involve

The definition of the word “angle”
sweep between two lines, two vectors, two vectors and a sense vector, and/or time.! 2

Angle between two lines (0 <0 < 90°)
The angle # between two lines is defined as the smallest angle between all

vectors aligned with the lines, hence, 0 <6 < 90°.

Angle between two vectors (0 < 0 < 180°)
The angle # between two vectors a and b is defined as the smallest angle

between & and b, and can be calculated from equation (2.2) as

= acos( 54' b ) (the acos function returns 0 < 6 < 180°).
|&[ [ bl

Angle between a vector and a plane (0 < 6 < 180°) ~
The angle # between a vector @ and a plane perpendicular to a vector b is
f =90° — é(é’, b), where é(z’i, b) is the angle between @ and b.

Alternately, if b points oppositely so a- f)<0, 0 = A(Ei, B) — 90°.

Angle from a vector to a vector with a sense vector (-180° < 0 < 180°%)

The angle # from vector @ to vector b with positive sense about vector

g is is regarded as positive when (Axb)-8 > 0 and negative when
d*b )

(a8 x B) -8 < 0, hence -180° < # < 180°, calculated as 0 = x a‘cos(lﬁ! 0]

Angle between two vectors with a sense vector and time (-oo <8 < tco)
The angle § from vector & to vector b with positive sense about vector s
with time can be calculated using wrap and may have values -00 < 8 < +oo.

Note: With only two lines or two vectors, an angle is an inherently non-
negative quantity. An angle may be regarded as negative when one associates a

positive sense with its value, e.g., associating a positive clockwise sense.

In certain applications, names are given to various angles as shown in the following table.

5.7 Optional™: Proofs

5.7.1 Proof that a rotation matrix is orthonormal

[he *RP ati ' S
'R” rotation table shown to the right relates tw i
o potation | . g lates two sets of right-
; orthogonal, unit vectors, namely, a,, &,. & by, by, b
e o Y: 8x, 8y, &, and by, by, b,.
€ Ay, 8y, 8, are orthogonal unit vectors, one knows
a. - A. e P — =
ira =1 (= X ¥52) and é‘j . §j =0 g £ i)
i

can also be written in terms of R..
ij

In view of the 2RP rotation table, a; - &;

Ayt ay = 1= R)Q(x + R’fv + Hfa
= BuxRyx + Ry Ry + Ry Ry,
ax-a; = 0 = Ry R, + Rx_v Rzy + M R,

o
-
y B
<
[
e

Ay ra, = 0= R)'X Hxx + Ryy ny + Hvz sz
Ay -ay, = = Rf,x + Rf‘y + Rgz

l g - a;ab E}.?BJ 1 tl tt, t. T - T t.', .ta " ) i 4
O Sl1ow *k equais t 1€ 1dentl S m T1X .\ ! }f V S t all =] 5]
) S 3 1 o

e xy Xz o e R R2
¥x zx e T RQ, R?
R-\"x Rb',\.' R}'z * ny Rvy R?y = R " R -+ R 7}}{ + o Rxx R)"-‘ + ny R}'"‘! + RKZ R}'Z
sz Rzy Rzz sz Ru, R’A yx Llxx vy Ltxy + R_vz sz R';Z'x f R?:y A R\%z

T =3 10-1MOS p :ll tl n1s i II (fllt]( 5 ma ‘ >, > J = Ky
I ] e lol ‘ MOST 11 a(l]X 111 lle lE‘;VlOI]S equartio. Bld 1 i i y
. V atrix I as 1t ele nents Aa = Aa 1 7z

(aRb)'l _ (aRb)T

5.7.2 Proof of relationship between b

The proof of equation (6)

«» Dy, b, and @, a,, a, measur

starts by expressing ¥ in terms of a,,

es of a vector v

Application

Names of angles

Aerospace and automotive
Gait analysis (hip)

Knee analysis

Surveying and astronomy

Spinning rigid body

Diving

roll, pitch, yaw or heading, attitude, bank

rotation, obliquity, torsion
flexion /extension, internal/external rotation, adduction/abduction

inclination /declination, ascension, azimuth, elevation, grade, pitch
nutation, spin, precession, libration, wobble

somersault, tilt, twist

rotation matrix defined in equations (1) and (3)

t ay, a, and using the elements of the *RP
O re-express each of a,., a,. a, ir by, b,, b
ax, 8y, &, in terms of by, by, b, as

There is no precise universally-agreed definition for these ang

les, particularly when all three angles are

; V= wd + 8, + 0.3,
: A b -
(1,3) Ve ( Rxx b, + aRx.Y b.‘/ £ aR_Ez bz) o — fapb s
2 apb 1° = V= (Rxx Ve + :]R}?X vy + aBE*{ U—’—') Bx
. Ty (CR.\/N by + ®R2. b, + °R" b apb :
5 L Ve e + ( xy Yz + dRE\ vy + °RP U) b
. apb 1. ; -~ Y : Y zy Yz y
. + v ( R, by + aREy by + aREz bz) + (a b | anb . A
z Vo + Ryz Uy —+ Rz)z 'Uz) bz

non-zero and large. For example, medical doctors, physiologists, physical therapists, and lab technicians
have loosely used terms like flexion and extension for centuries. Recent biomechanical studies rely on

Combini ; ;
s the previous expression for ¥ with ¥ = 4, b, + &. 5. + 7. 5
relationship in equation (2), zbx + 0y by + 0. b

and application of the definition of the ele

z» Subsequent use of the transpose
ments of the PR® rotation matrix

accurate measurements of these angles - and requires more precise definition (see Section 8.4). from equations (1) and (3) proves equation (6)

P apb apb  apb _
IHeight provides a useful analogy to angle. Usually, height is inherently non-negative, e.g., a person’s height is a positive “ i ﬁz - aRgX R%;X sz Vg bR_fiX bR?: - R)e: "
quantity. However, one may report height above seal-level as 10 m by implying an upward positive sense. Similarly, angles = : Uy | = ny aRyy aR;’y vy _ bppa bRa} b qz z Uy
may be negative by providing a positive sense. Historically, angles (e.g., used by the ancient Greeks) predate negative numbers Vs a R}Lz apb  a Rb‘ ’ (2) . yx vy RS,Z Uy — b R | o
(in widespread use by Europeans in 1700 A.D.) by thousands of years. ~ £ ¥z 2z Uz RS bng bpa ” (1,3) 4
2For example, the “dihedral angle” between two planes is the angle between the normals to the two planes. ” : 22 z U
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