

Chapter 6

Vector differentiation and integration

Summary (see examples in Hw 5 and 6)

Many engineering analyses involve rates of change of vectors. For example, motion studies involve velocity (time-rate of change of position) and geometry involves curvature (spatial-rate of change of position). This chapter presents concepts and a precise definition for the derivative of a vector in a reference frame.

Note: A reference frame is simply a rigid object. Reference frames and rigid bases are discussed in Section 7.2. For computationally efficiency, consider the golden rule for vector differentiation in Section 7.3.

Differentation concepts: Changes in magnitude and direction

In scalar calculus, $\frac{df}{dt}$ (the ordinary derivative of a scalar function f with respect to the scalar variable t) is defined as shown to the right.

$$\frac{df}{dt} \stackrel{\triangle}{=} \lim_{h \to 0} \frac{f(t+h) - f(t)}{h}$$

In vector calculus, $\frac{^{A}d\vec{\mathbf{v}}}{dt}$ [the ordinary derivative in *reference frame* (or *rigid vector basis*) A of a vector $\vec{\mathbf{v}}$ with respect to the scalar variable t] is equal to the expression shown to the right where $\vec{\mathbf{v}}(t+h)|_A$ and $\vec{\mathbf{v}}(t)|_A$ denote $\vec{\mathbf{v}}$ evaluated in A at t+h and t, respectively.

$$\frac{{}^{A}_{d}\vec{\mathbf{v}}}{dt} \triangleq \lim_{h \to 0} \frac{\vec{\mathbf{v}}(t+h)|_{A} - \vec{\mathbf{v}}(t)|_{A}}{h}$$

Differentiating a vector is more complicated than differentiating a scalar because a vector's magnitude can change, its direction in reference frame (or rigid basis) A can change, or both can change.

For example, the figure to the right shows a vector $\vec{\mathbf{r}}$ whose magnitude changes but whose direction in reference frame A remains constant . The vector $\vec{\mathbf{r}}(t+h) - \vec{\mathbf{r}}(t)$ measures the change in reference frame A of the vector $\vec{\mathbf{r}}$ from time t to time t+h. In the limit as $h \to 0$, the direction of $\frac{A}{d\vec{r}}$ is parallel to \vec{r} .

The second example shows a vector $\vec{\mathbf{r}}$ whose magnitude is constant but whose direction in reference frame A changes. The vector $\vec{\mathbf{r}}(t+h) - \vec{\mathbf{r}}(t)$ measures the change in reference frame A of the vector $\vec{\mathbf{r}}$ from time t to time t+h. In the limit as $h\to 0$, $\frac{A_{\vec{\mathbf{r}}}}{dt}$ is perpendicular to $\vec{\mathbf{r}}(t)$.

40

Expressing a vector in terms of vectors fixed in a reference frame

When three noncoplanar (but not necessarily orthogonal or unit) vectors $\vec{\mathbf{a}}_1$, $\vec{\mathbf{a}}_2$, $\vec{\mathbf{a}}_3$ are fixed in a reference frame (or rigid vector basis) A, a one can show (see Section 4.6) there exist three unique scalar functions v_1 , v_2 , v_3 such that any vector $\vec{\mathbf{v}}$ can be expressed as

$$\vec{\mathbf{v}} = v_1 \, \vec{\mathbf{a}}_1 + v_2 \, \vec{\mathbf{a}}_2 + v_3 \, \vec{\mathbf{a}}_3 \tag{1}$$

When one or more of v_1 , v_2 , v_3 are a function of the scalar variable t, $\vec{\mathbf{v}}$ is called a **vector** function of t in A and one may define the vector $\vec{\mathbf{v}}$ evaluated in A at $t = \bar{t}$ as

$$\vec{\mathbf{v}}(\bar{t})|_A \stackrel{\Delta}{=} v_1(\bar{t}) \vec{\mathbf{a}}_1 + v_2(\bar{t}) \vec{\mathbf{a}}_2 + v_3(\bar{t}) \vec{\mathbf{a}}_3$$

^a A reference frame (or rigid vector basis) A can be constructed by as few as three non-collinear points P₁, P₂, P₃ whose distance from each other are constant. Reference frames and rigid bases are discussed in Section 7.2. Three noncoplanar vectors that are inherently fixed in A are: $\vec{\mathbf{a}}_1$ from P_1 to P_2 ; $\vec{\mathbf{a}}_2$ from P_1 to P_3 ; and $\vec{\mathbf{a}}_3 = \vec{\mathbf{a}}_1 \times \vec{\mathbf{a}}_2$.

Partial and ordinary derivatives of a vector in a reference frame

Referring to Section 6.2, when v_1 , v_2 , v_3 are functions of the scalar variables s and t, one may define the partial derivative in A of \vec{v} with respect to t as either

$$\frac{A}{\partial \vec{\mathbf{v}}} \stackrel{\triangle}{=} \frac{\partial v_1}{\partial t} \vec{\mathbf{a}}_1 + \frac{\partial v_2}{\partial t} \vec{\mathbf{a}}_2 + \frac{\partial v_3}{\partial t} \vec{\mathbf{a}}_3 \quad \text{or} \quad \frac{A}{\partial \vec{\mathbf{v}}} \stackrel{\triangle}{=} \lim_{h \to 0} \frac{\vec{\mathbf{v}}(s, t+h)|_A - \vec{\mathbf{v}}(s, t)|_A}{h} \quad (2)$$

When v_1, v_2, v_3 are functions of a single scalar variable t, the ordinary derivative in A of $\vec{\mathbf{v}}$ with respect to t is defined as either

$$\boxed{ \frac{{}^{A}_{}d\vec{\mathbf{v}}}{dt} \stackrel{\triangle}{=} \frac{dv_{1}}{dt} \vec{\mathbf{a}}_{1} + \frac{dv_{2}}{dt} \vec{\mathbf{a}}_{2} + \frac{dv_{3}}{dt} \vec{\mathbf{a}}_{3} } \text{ or } \boxed{ \frac{{}^{A}_{}d\vec{\mathbf{v}}}{dt} \stackrel{\triangle}{=} \lim_{h \to 0} \frac{\vec{\mathbf{v}}(t+h)|_{A} - \vec{\mathbf{v}}(t)|_{A}}{h} }$$

Constant vectors (vectors fixed in a reference frame)

Referring to Section 6.3, when each of v_1 , v_2 , v_3 are constant, $\vec{\mathbf{v}}$ is said to be a constant vector in A [or equivalently a vector fixed in A]. When $\vec{\mathbf{v}}$ is constant in A, \mathbf{v}

- $\vec{\mathbf{v}}$ has a constant magnitude, i.e., $|\vec{\mathbf{v}}| = C$ where C is a constant
- $\vec{\mathbf{v}}$ has a constant direction in A, i.e., $\vec{\mathbf{v}} \cdot \vec{\mathbf{a}}_i = C_i$ where C_i is a constant and $\vec{\mathbf{a}}_i$ is any vector fixed in A
- $\frac{^{A}d\vec{\mathbf{v}}}{dt} = \vec{\mathbf{0}}$ [proved by inspection of equation (3)] Note: Certain analyses (e.g., conservation of linear momentum or conservation of angular momentum) lead to expressions like $\frac{{}^{A}d\vec{\mathbf{v}}}{dt} = \vec{\mathbf{0}}$. Information about $\vec{\mathbf{v}}$ is determined by setting $|\vec{\mathbf{v}}| = C$ or $\vec{\mathbf{v}} \cdot \vec{\mathbf{a}}_{i} = C_{i}$.

Vectors with constant magnitude

Since a vector's $\vec{\mathbf{v}}$'s magnitude is a scalar, the change in $|\vec{\mathbf{v}}|$ is independent of reference frame or basis. If $\vec{\mathbf{v}}$ has constant magnitude, $\frac{^{F}d\vec{\mathbf{v}}}{dt}$, the derivative of $\vec{\mathbf{v}}$ in any reference frame (or rigid basis) F, is perpendicular to $\vec{\mathbf{v}}$. Note: This is shown in equation (4) and verifies the second conceptual example in Section 6.1

$$\vec{\mathbf{v}} \cdot \frac{{}^{F}\!d\vec{\mathbf{v}}}{dt} = 0 \tag{4}$$

Proof of equation (4): $\vec{\mathbf{v}} \cdot \vec{\mathbf{v}} = \text{const}$ hence $\frac{d(\vec{\mathbf{v}} \cdot \vec{\mathbf{v}})}{dt} = 0$. Section 6.6 gives $\frac{d(\vec{\mathbf{v}} \cdot \vec{\mathbf{v}})}{dt} = 2\vec{\mathbf{v}} \cdot \frac{^F d\vec{\mathbf{v}}}{dt}$

Properties of derivatives of vectors

The following are derivative properties for arbitrary vectors $\vec{\mathbf{u}}$, $\vec{\mathbf{v}}$, $\vec{\mathbf{w}}$, an arbitrary dependent scalar variable s, an arbitrary independent variable t, and an arbitrary reference frame (or rigid basis) A.

Properties of ordinary or partial derivatives.		
$\frac{d(\vec{\mathbf{u}} \cdot \vec{\mathbf{v}})}{dt} = \frac{{}^{A}_{d}\vec{\mathbf{u}}}{dt} \cdot \vec{\mathbf{v}} + \vec{\mathbf{u}} \cdot \frac{{}^{A}_{d}\vec{\mathbf{v}}}{dt}$	$\frac{{}^{A}d(s\vec{\mathbf{u}})}{dt} = \frac{ds}{dt}\vec{\mathbf{u}} + s\frac{{}^{A}d\vec{\mathbf{u}}}{dt}$	
$\frac{{}^{A}\!d(\vec{\mathbf{u}}\times\vec{\mathbf{v}})}{dt} = \frac{{}^{A}\!d\vec{\mathbf{u}}}{dt}\times\vec{\mathbf{v}} + \vec{\mathbf{u}}\times\frac{{}^{A}\!d\vec{\mathbf{v}}}{dt}$	$\frac{{}^{A}\!d(\vec{\mathbf{u}} + \vec{\mathbf{v}} + \vec{\mathbf{w}})}{dt} = \frac{{}^{A}\!d\vec{\mathbf{u}}}{dt} + \frac{{}^{A}\!d\vec{\mathbf{v}}}{dt} + \frac{{}^{A}\!d\vec{\mathbf{w}}}{dt}$	
$\frac{{}^{A}\!d(\vec{\mathbf{u}}*\vec{\mathbf{v}})}{dt} = \frac{{}^{A}\!d\vec{\mathbf{u}}}{dt}*\vec{\mathbf{v}} + \vec{\mathbf{u}}*\frac{{}^{A}\!d\vec{\mathbf{v}}}{dt}$	$\frac{d(\vec{\mathbf{u}} \times \vec{\mathbf{v}} \cdot \vec{\mathbf{w}})}{dt} = \frac{{}^{A}_{d}\vec{\mathbf{u}}}{dt} \times \vec{\mathbf{v}} \cdot \vec{\mathbf{w}} + \vec{\mathbf{u}} \times \frac{{}^{A}_{d}\vec{\mathbf{v}}}{dt} \cdot \vec{\mathbf{w}} + \vec{\mathbf{u}} \times \vec{\mathbf{v}} \cdot \frac{{}^{A}_{d}\vec{\mathbf{w}}}{dt}$	

Section 6.12 proves the first equation i.e., the vector dot-product derivative property.

6.7 Example: Derivatives of a vector

The derivative of a *vector* is substantially different than the derivative of a scalar because a vector derivative involves a change in direction whereas a scalar derivative does not.

To demonstrate how the derivative of a vector can involve a reference frame, consider a rigid body B that rotates in a plane A. Righthanded sets of orthogonal unit vectors $\hat{\mathbf{a}}_x$, $\hat{\mathbf{a}}_y$, $\hat{\mathbf{a}}_z$ and $\hat{\mathbf{b}}_x$, $\hat{\mathbf{b}}_y$, $\hat{\mathbf{b}}_z$ are fixed in A and B, respectively, with $\hat{\mathbf{a}}_z = \hat{\mathbf{b}}_z$ normal to the plane.

The orientation of $\hat{\mathbf{b}}_{x}$, $\hat{\mathbf{b}}_{y}$, $\hat{\mathbf{b}}_{z}$ is determined by first setting $\hat{\mathbf{b}}_{i}$ = $\hat{\mathbf{a}}_{i}$ (i = x, y, z) and then subjecting B to a right-handed rotation in A characterized by $\theta \hat{\mathbf{a}}_z$ (θ is a variable that depends on time t).

Shown below is the calculation of the derivative of the vector $\vec{\mathbf{r}} = x \, \hat{\mathbf{b}}_{\mathbf{x}}$ (x is a time-dependent variable) in both B and A. Since $\frac{{}^{B}d\vec{\mathbf{r}}}{dt} \neq \frac{{}^{A}d\vec{\mathbf{r}}}{dt}$, it is clear that reference frames make a difference! ²

Time-derivative of $\vec{\mathbf{r}}$ in B	Time-derivative of $\vec{\mathbf{r}}$ in \mathbf{A}
$\vec{\mathbf{r}} = x \hat{\mathbf{b}}_{x}$	$\vec{\mathbf{r}} = x \left[\cos(\theta) \hat{\mathbf{a}}_{x} + \sin(\theta) \hat{\mathbf{a}}_{y} \right]$
$\begin{vmatrix} \frac{B}{d\vec{\mathbf{r}}} & = \dot{x} \hat{\mathbf{b}}_{\mathbf{x}} \\ \frac{1}{2} & \frac{1}{2} &$	$\frac{A_{d\vec{\mathbf{r}}}}{dt} = \dot{x} \left[\cos(\theta) \hat{\mathbf{a}}_{x} + \sin(\theta) \hat{\mathbf{a}}_{y} \right] + x \dot{\theta} \left[-\sin(\theta) \hat{\mathbf{a}}_{x} + \cos(\theta) \hat{\mathbf{a}}_{y} \right]$
	$= \dot{x} \hat{\mathbf{b}}_{\mathbf{x}} + x \dot{\theta} \hat{\mathbf{b}}_{\mathbf{y}}$

In view of the fact that $\frac{A_{\vec{r}}}{dt}$ differs from $\frac{B_{\vec{r}}}{dt}$ by only one term (which is perpendicular to \vec{r}), it is natural to wonder how to relate them. The next chapter gives a very important relationship in equation (7.1) for derivatives in different reference frames called the golden rule for vector differentiation, which for this example (worked out again in Section 7.3.1) is

$$\frac{{}^{A}_{d}\vec{\mathbf{r}}}{dt} = \frac{{}^{B}_{d}\vec{\mathbf{r}}}{dt} + {}^{A}\vec{\boldsymbol{\omega}}^{B} \times \vec{\mathbf{r}}$$

¹It does not make sense to state that a "vector is constant or fixed" without specifying a reference frame (or rigid basis).

²Since $\vec{\mathbf{r}}$ is a vector, its time-derivative describes its change in magnitude and direction. Since $\vec{\mathbf{r}}$'s magnitude is a scalar, changes in magnitude can be analyzed with scalar calculus, e.g., the time-derivative of x is simply \dot{x} . However, to determine how $\vec{\mathbf{r}}$'s direction changes, we must ask "with respect to what". For example, $\vec{\mathbf{r}}$'s direction does not change in B since $\vec{\mathbf{r}}$ is always in the b_x direction and b_x is fixed on B. Conversely, as B rotates in A, \vec{r} 's direction changes in A. The faster B spins in A, the faster $\vec{\mathbf{r}}$'s direction changes in A. This may be demonstrated by spinning in a room while elongating a bike pump.

Differential of a vector

Referring to Section 6.2, when a vector $\vec{\mathbf{v}}$ is regarded as a function of n independent scalar variables t_1, \ldots, t_n in a reference frame (or rigid basis) A, one may define a quantity ${}^A d\vec{\mathbf{v}}$ called the differential in A of $\vec{\mathbf{v}}$ in terms of dt_1, \ldots, dt_n (differentials of the independent variables t_1, \ldots, t_n). These "independent differentials" are defined to be arbitrary (usually small) quantities that have the same dimension of t_1, \ldots, t_n . With dt_1, \ldots, dt_n in hand, ${}^A d\vec{\mathbf{v}}$ is defined as either³

When $\vec{\mathbf{v}}$ is regarded as a function of a *single* scalar variable t in A, the right-most equation (6) reduces to the equation shown to the right. Subsequently dividing both sides by dt gives rise to the ratio of ${}^{A}d\vec{\mathbf{v}}$ to dt.

$${}^{A}d\vec{\mathbf{v}} \stackrel{=}{=} \frac{{}^{A}\partial\vec{\mathbf{v}}}{\partial t} dt$$

Hence, although the symbol $\frac{^{A}d\vec{\mathbf{v}}}{dt}$ can always be regarded as a ratio of differentials, it can sometimes be an *ordinary derivative* in the sense of equation (3).

$$\frac{{}^{A}\!d\vec{\mathbf{v}}}{dt} = \frac{{}^{A}\!\!\partial\vec{\mathbf{v}}}{\partial t}$$

Integral of a vector

Referring to Section 6.8, when a vector $\vec{\mathbf{v}}$ is regarded as a function of the scalar variable t in a reference frame (or rigid vector basis) A, one may define the integral in A of $\vec{\mathbf{v}}$ as

$$\int \vec{\mathbf{v}} dt \stackrel{\triangle}{=} \left(\int v_1 dt \right) \vec{\mathbf{a}}_1 + \left(\int v_2 dt \right) \vec{\mathbf{a}}_2 + \left(\int v_3 dt \right) \vec{\mathbf{a}}_3 \tag{7}$$

For example, substituting the left-most expression of ${}^{A}d\vec{\mathbf{v}}$ in equation (6) for $\vec{\mathbf{v}}$ in equation (7) results in a definition for the integral in A of the differential of $\vec{\mathbf{v}}$.

$$\int_{(6,7)}^{A} d\vec{\mathbf{v}} = \left(\int dv_1 \right) \vec{\mathbf{a}}_1 + \left(\int dv_2 \right) \vec{\mathbf{a}}_2 + \left(\int dv_3 \right) \vec{\mathbf{a}}_3
= \left(v_1 + c_1 \right) \vec{\mathbf{a}}_1 + \left(v_2 + c_2 \right) \vec{\mathbf{a}}_2 + \left(v_3 + c_3 \right) \vec{\mathbf{a}}_3
= \vec{\mathbf{v}} + \vec{\mathbf{c}} \quad \text{where } \vec{\mathbf{c}} \text{ is a constant vector in } A \text{ (i.e., } \vec{\mathbf{c}} \text{ is fixed in } A)$$
(8)

Optional**: Limit of a vector in a reference frame

Referring to Section 6.2, when $\vec{\mathbf{v}}$ is a *vector function* in reference frame (or rigid basis) A of scalar variables s and t, the vector limit in A of $\vec{\mathbf{v}}$ as $t \to \bar{t}$ is defined as

$$\lim_{t \to \bar{t}} \vec{\mathbf{v}}(s,t)|_{A} \stackrel{\Delta}{=} \left[\lim_{t \to \bar{t}} v_{1}(s,t)\right] \vec{\mathbf{a}}_{1} + \left[\lim_{t \to \bar{t}} v_{2}(s,t)\right] \vec{\mathbf{a}}_{2} + \left[\lim_{t \to \bar{t}} v_{3}(s,t)\right] \vec{\mathbf{a}}_{3}$$
(9)

44

To connect vector limits with vector differtion (9) as shown to the right.

Next, use the definition in equation (1.25)for the partial derivative of the scalar v_i (i=1, 2, 3) with respect to t (as shown below).

To connect vector limits with vector differentiation, apply the limit definition in equation (9) as shown to the right.
$$\lim_{h\to 0} \frac{\vec{\mathbf{v}}(s,t+h)|_A - \vec{\mathbf{v}}(s,t)|_A}{h} \stackrel{\triangle}{=} \left[\lim_{h\to 0} \frac{v_1(s,t+h) - v_1(s,t)}{h}\right] \vec{\mathbf{a}}_1 + \left[\lim_{h\to 0} \frac{v_2(s,t+h) - v_2(s,t)}{h}\right] \vec{\mathbf{a}}_2 \quad (10)$$
For the *partial derivative* of the scalar v_i to the partial derivative of the scalar v_i and v_i to the partial derivative of the scalar v_i to the partial derivative v_i to the partial derivat

Lastly, using the definition in equation (2) proves how vector limits are related to vector differentiation.

$$\lim_{h \to 0} \frac{\vec{\mathbf{v}}(s, t+h)|_A - \vec{\mathbf{v}}(s, t)|_A}{h} = \frac{\partial v_1}{\partial t} \vec{\mathbf{a}}_1 + \frac{\partial v_2}{\partial t} \vec{\mathbf{a}}_2 + \frac{\partial v_3}{\partial t} \vec{\mathbf{a}}_3 = \frac{{}^A\!\partial \vec{\mathbf{v}}}{\partial t}$$
(11)

6.11 Optional**: Differentiation with respect to a vector and gradients

Sometimes a scalar function such as temperature depends on a vector such as a position vector.

If a scalar F depends on a vector $\vec{\mathbf{v}}$, it is useful to define the vector denoted $\vec{\nabla}_{\vec{\mathbf{v}}}F$ in equation (12) where $\hat{\mathbf{a}}_{\mathbf{x}}$, $\hat{\mathbf{a}}_{\mathbf{y}}$, $\hat{\mathbf{a}}_{\mathbf{z}}$ are any orthogonal unit vectors and $v_i \stackrel{\triangle}{=} \vec{\mathbf{v}} \cdot \hat{\mathbf{a}}_i$ (i = x, y, z). $\vec{\nabla}_{\vec{\mathbf{v}}}F \stackrel{\triangle}{=} \frac{\partial F}{\partial v_x} \hat{\mathbf{a}}_{\mathbf{x}} + \frac{\partial F}{\partial v_y} \hat{\mathbf{a}}_{\mathbf{y}} + \frac{\partial F}{\partial v_z} \hat{\mathbf{a}}_{\mathbf{z}}$

$$\vec{\nabla}_{\vec{\mathbf{v}}} F \stackrel{\triangle}{=} \frac{\partial F}{\partial v_x} \, \hat{\mathbf{a}}_{\mathbf{x}} + \frac{\partial F}{\partial v_y} \, \hat{\mathbf{a}}_{\mathbf{y}} + \frac{\partial F}{\partial v_z} \, \hat{\mathbf{a}}_{\mathbf{z}}$$
(12)

The quantity $\nabla_{\vec{\mathbf{v}}} F$ is called differentiation of F with respect to $\vec{\mathbf{v}}$ and is invariant with respect to the choice of basis vectors $\hat{\mathbf{a}}_{x}$, $\hat{\mathbf{a}}_{v}$, $\hat{\mathbf{a}}_{z}$. When $\nabla_{\vec{\mathbf{v}}} F$ produces a force vector, the scalar function F is called a force function. When $\vec{\mathbf{v}}$ is a position vector, $\vec{\nabla}_{\vec{\mathbf{v}}}F$ is called a spatial gradient (and is frequently denoted without the subscript, i.e., $\vec{\nabla} F$). If F is a continuous function that describes the surface of an object, $\nabla_{\vec{\mathbf{v}}} F$ is normal to the surface of the object.

Example of differential geometry: Normal and tangent to a circle

A circle can be defined as the locus of points in a plane that are a distance r (called the *circle's radius*) from a point B_0 (called the circle's center). For example, the figure to the right shows a circle of radius r that is centered at point B_0 .

The position of a point Q on the circle's periphery from point B_0 can be expressed in terms of the scalars x and y as

$$\vec{\mathbf{r}}^{\,Q/B_{\mathrm{o}}} = x \, \widehat{\mathbf{b}}_{\mathrm{x}} + y \, \widehat{\mathbf{b}}_{\mathrm{y}}$$

where $\hat{\mathbf{b}}_{x}$, $\hat{\mathbf{b}}_{y}$, $\hat{\mathbf{b}}_{z}$ are right-handed, orthogonal, unit vectors with $\hat{\mathbf{b}}_{z}$ perpendicular to the plane of the circle.

A mathematical definition of a circle is $|\vec{\mathbf{r}}^{Q/B_0}| = r$ which results in the scalar relationship F to the right between x, y, and r.

When a scalar function F describes the boundary of an object, the spatial gradient ∇F is normal to the boundary.

With $\vec{\mathbf{r}}^{Q/B_0} = x \hat{\mathbf{b}}_x + y \hat{\mathbf{b}}_y$, ∇F can be expressed as shown right.

This gradient ∇F calculates an outward normal vector $\vec{\mathbf{n}}$ at point Q and a vector \vec{t} tangent to the circle at point Q (directed as shown in the figure).

Note: Homework 3.13 calculates the normal and tangent for an ellipse.

$$F = x^2 + y^2 - r^2 = 0$$

$$\vec{\nabla}F \stackrel{=}{\underset{(6.12)}{=}} \frac{\partial F}{\partial x} \hat{\mathbf{b}}_{x} + \frac{\partial F}{\partial y} \hat{\mathbf{b}}_{y}$$
$$= 2 x \hat{\mathbf{b}}_{x} + 2 y \hat{\mathbf{b}}_{y}$$

$$\vec{\mathbf{n}} = x \, \hat{\mathbf{b}}_{x} + y \, \hat{\mathbf{b}}_{y}$$

$$\vec{\mathbf{t}} = \hat{\mathbf{b}}_{z} \times \vec{\mathbf{n}} = -y \, \hat{\mathbf{b}}_{x} + x \, \hat{\mathbf{b}}_{y}$$

Copyright © 1992-2014 by Paul Mitiguy F=ma

³The equivalence of the definitions of ${}^{A}d\vec{\mathbf{v}}$ in equation (6) is shown by substituting $\frac{{}^{A}\partial\vec{\mathbf{v}}}{\partial t_{i}} \stackrel{\triangle}{=} \frac{\partial v_{1}}{\partial t_{i}} \vec{\mathbf{a}}_{1} + \frac{\partial v_{2}}{\partial t_{i}} \vec{\mathbf{a}}_{2} + \frac{\partial v_{3}}{\partial t_{i}} \vec{\mathbf{a}}_{3}$ (i = 1, 2, ..., n), into the right-most expression for ${}^{A}d\vec{\mathbf{v}}$ in equation (6) and factoring on $\vec{\mathbf{a}}_{1}$, $\vec{\mathbf{a}}_{2}$, $\vec{\mathbf{a}}_{3}$. Next, the coefficient of $\vec{\mathbf{a}}_{1}$ is seen as the differential of v_{1} , i.e., $dv_{1} \triangleq \frac{\partial f}{\partial t_{1}} dt_{1} + \frac{\partial f}{\partial t_{2}} dt_{2} + ... + \frac{\partial f}{\partial t_{n}} dt_{n}$. Similarly for the coefficients of $\vec{\mathbf{a}}_{2}$, $\vec{\mathbf{a}}_{3}$.

⁴Section 10.7 shows the utility of equation (8) for integrating acceleration to find velocity and position.

Gradients are used for analyzing a dynamic celt (rattleback) at www.MotionGenesis.com (GettingStarted link)

6.12Optional**: Proofs

Copyright © 1992-2014 by Paul Mitiguy F=ma

Proof of vector dot-product derivative property

The proof of the first equation in Section 6.6, i.e., the vector dot-product derivative property starts by expressing the arbitrary vectors $\vec{\mathbf{u}}$ and $\vec{\mathbf{v}}$ in terms of an arbitrary set of orthogonal unit vectors $\hat{\mathbf{a}}_{\mathbf{v}}$, $\hat{\mathbf{a}}_{\mathbf{v}}$, $\hat{\mathbf{a}}_{\mathbf{z}}$ fixed in an arbitrary reference frame (or rigid basis) A as⁵

$$\vec{\mathbf{u}} = u_x \, \hat{\mathbf{a}}_{\mathbf{x}} + u_y \, \hat{\mathbf{a}}_{\mathbf{y}} + u_z \, \hat{\mathbf{a}}_{\mathbf{z}} \qquad \qquad \vec{\mathbf{v}} = v_x \, \hat{\mathbf{a}}_{\mathbf{x}} + v_y \, \hat{\mathbf{a}}_{\mathbf{y}} + v_z \, \hat{\mathbf{a}}_{\mathbf{z}}$$
 (13)

Forming the scalar quantity $\vec{\mathbf{u}} \cdot \vec{\mathbf{v}}$ and differentiating with respect to the scalar variable t, one finds

$$\vec{\mathbf{u}} \cdot \vec{\mathbf{v}} = u_x v_x + u_y v_y + u_z v_z$$

$$\frac{d(\vec{\mathbf{u}} \cdot \vec{\mathbf{v}})}{dt} = \dot{u}_x v_x + u_x \dot{v}_x + \dot{u}_y v_y + u_y \dot{v}_y + \dot{u}_z v_z + u_z \dot{v}_z$$
(14)

The next step is to form the right-hand side of the equation being proved, i.e., $\frac{A_d \vec{\mathbf{u}}}{dt} \cdot \vec{\mathbf{v}} + \vec{\mathbf{u}} \cdot \frac{A_d \vec{\mathbf{v}}}{dt}$, as

$$\frac{A}{d\vec{\mathbf{u}}} \stackrel{\triangle}{=} \dot{u}_x \, \hat{\mathbf{a}}_x + \dot{u}_y \, \hat{\mathbf{a}}_y + \dot{u}_z \, \hat{\mathbf{a}}_z \qquad \qquad \frac{A}{d\vec{\mathbf{u}}} \cdot \vec{\mathbf{v}} \stackrel{=}{=} \dot{u}_x \, v_x + \dot{u}_y \, v_y + \dot{u}_z \, v_z \\
\frac{A}{d\vec{\mathbf{v}}} \stackrel{\triangle}{=} \dot{v}_x \, \hat{\mathbf{a}}_x + \dot{v}_y \, \hat{\mathbf{a}}_y + \dot{v}_z \, \hat{\mathbf{a}}_z \qquad \qquad \vec{\mathbf{u}} \cdot \frac{A}{d\vec{\mathbf{v}}} \stackrel{=}{=} u_x \, \dot{v}_x + u_y \, \dot{v}_y + u_z \, \dot{v}_z$$
(15)

Combining the two right-most equations in the previous set of equations gives

$$\frac{{}^{A}_{d}\vec{\mathbf{u}}}{dt} \cdot \vec{\mathbf{v}} + \vec{\mathbf{u}} \cdot \frac{{}^{A}_{d}\vec{\mathbf{v}}}{dt} = \dot{u}_{x} v_{x} + \dot{u}_{y} v_{y} + \dot{u}_{z} v_{z} + u_{x} \dot{v}_{x} + u_{y} \dot{v}_{y} + u_{z} \dot{v}_{z}$$
(16)

This proof concludes by viewing the equivalence displayed in equations (14) and (16), and recalling that $\hat{\mathbf{a}}_{x}$, $\hat{\mathbf{a}}_{y}$, $\hat{\mathbf{a}}_{z}$ are arbitrary vectors fixed in an arbitrary reference frame (or rigid basis) A. Hence, for arbitrary reference frames (or rigid bases) A and/or B.

$$\frac{d(\vec{\mathbf{u}} \cdot \vec{\mathbf{v}})}{dt} = \frac{{}^{A}_{d}\vec{\mathbf{u}}}{dt} \cdot \vec{\mathbf{v}} + \vec{\mathbf{u}} \cdot \frac{{}^{A}_{d}\vec{\mathbf{v}}}{dt} = \frac{{}^{B}_{d}\vec{\mathbf{u}}}{dt} \cdot \vec{\mathbf{v}} + \vec{\mathbf{u}} \cdot \frac{{}^{B}_{d}\vec{\mathbf{v}}}{dt}$$

Note: The vector dot-product derivative property is used to prove the uniqueness and existence of the golden rule for vector differentiation [equation (7.1)] in Section 7.5.1.

Chapter 7

Angular velocity & angular acceleration

Important formulas for angular velocity and angular acceleration. (See examples in Hw 6)

	y and angular acceleration: (See examples in 11w 0)
Golden rule for vector differentiation	$\frac{{}^{A}\!d\vec{\mathbf{v}}}{dt} \stackrel{=}{=} \frac{{}^{B}\!d\vec{\mathbf{v}}}{dt} + {}^{A}\!\vec{\boldsymbol{\omega}}^{B} \times \vec{\mathbf{v}}$
Simple angular velocity	${}^{A}\vec{\boldsymbol{\omega}}^{B} \stackrel{=}{=} \pm \dot{\theta} \boldsymbol{\lambda}$ when $\boldsymbol{\lambda}$ is <u>fixed</u> in both A and B
Angular velocity negative property	${}^{A}\vec{\omega}^{B} = {}^{-B}\vec{\omega}^{A}$
Angular velocity addition theorem	$\vec{a}\vec{\omega}^D \stackrel{(7.6)}{=} \vec{a}\vec{\omega}^B + \vec{B}\vec{\omega}^C + \vec{C}\vec{\omega}^D$
Angular velocity and arbitrary vectors	See equation (2)
Angular velocity and basis vectors	${}^{A}\vec{\boldsymbol{\omega}}^{B} \ \stackrel{=}{\underset{(7.3)}{=}} \ (\frac{{}^{A}_{d}\widehat{\mathbf{b}}_{\mathbf{y}}}{dt} \cdot \widehat{\mathbf{b}}_{\mathbf{z}}) \widehat{\mathbf{b}}_{\mathbf{x}} + (\frac{{}^{A}_{d}\widehat{\mathbf{b}}_{\mathbf{z}}}{dt} \cdot \widehat{\mathbf{b}}_{\mathbf{x}}) \widehat{\mathbf{b}}_{\mathbf{y}} + (\frac{{}^{A}_{d}\widehat{\mathbf{b}}_{\mathbf{x}}}{dt} \cdot \widehat{\mathbf{b}}_{\mathbf{y}}) \widehat{\mathbf{b}}_{\mathbf{z}}$
Angular velocity and rotation matrices	See equation (4)
Partial angular velocity (Kane's method)	See Section 26.2 (also for virtual angular displacement)
B's angular acceleration in A	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Angular acceleration addition theorem	${}^{A}\vec{oldsymbol{lpha}}{}^{C} \stackrel{=}{=} {}^{A}\vec{oldsymbol{lpha}}{}^{B} + {}^{B}\vec{oldsymbol{lpha}}{}^{C} + {}^{A}\vec{oldsymbol{\omega}}{}^{B} imes {}^{B}ec{oldsymbol{\omega}}{}^{C}$
Angular acceleration negative property	${}^A\vec{\boldsymbol{\alpha}}{}^B \stackrel{=}{=} {}^{-B}\vec{\boldsymbol{\alpha}}{}^A$

7.1 Angular velocity concepts: Moon and Earth celestial systems

Each of the two pictures below depict a moon M in counter-clockwise orbit about a planet E. From the pictures, one can see whether $\vec{E}\vec{\omega}^{M}$ (M's angular velocity in E) is zero or non-zero.

¹Although the left-moon's angular velocity is $\vec{0}$, one can construct a rigid vector basis B so that $\vec{E}\vec{\omega}^B \neq \vec{0}$ by using an Earth-to-Moon pointing vector and a vector perpendicular to the orbital plane. Note: A particle only translates whereas a rigid body can translate and rotate. A particle can translate around Earth - but the particle is not "rotating" (particles do not possess orientation). Conversely, a rigid body can translate around Earth and its orientation may change.

⁵The proof of the *vector dot-product derivative property* in Section 6.12 does not require, but is greatly simplified, with orthogonal unit vectors. To do the same proof with non-orthogonal unit vectors $\hat{\mathbf{a}}_1$, $\hat{\mathbf{a}}_2$, $\hat{\mathbf{a}}_3$, one must write $\vec{\mathbf{u}} \cdot \vec{\mathbf{v}}$ in terms of $\hat{\mathbf{a}}_1 \cdot \hat{\mathbf{a}}_2$, $\hat{\mathbf{a}}_1 \cdot \hat{\mathbf{a}}_3$, and $\hat{\mathbf{a}}_2 \cdot \hat{\mathbf{a}}_3$ (which are the cosines of angles between the unit vectors) and then note that for a rigid basis A, the angles between these unit vectors are constant - and hence $\frac{d(\widehat{\mathbf{a}}_i \cdot \widehat{\mathbf{a}}_j)}{dt} = 0$ (i, j = 1, 2, 3).