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Chapter 5: Rotation matrices 1

Chapter 6

Vector differentiation and integration

Summary (see examples in Hw 5 and 6)

Many engineering analyses involve rates of change of vectors. For example, motion studies involve velocity
(time-rate of change of position) and geometry involves curvature (spatial-rate of change of position). This
chapter presents concepts and a precise definition for the derivative of a vector in a reference frame.

Note: A reference frame is simply a rigid object. Reference frames and rigid bases are discussed in Section 7.2.
For computationally efficiency, consider the golden rule for vector differentiation in Section 7.3.

6.1 Differentation concepts: Changes in magnitude and direction

In scalar calculus, %iiit (the ordinary derivative of a scalar function f with df a lim ft+h) — f(t)
respect to the scalar variable ¢) is defined as shown to the right. t  h—o h

A
In vector calculus, %t‘—’ [the ordinary derivative in reference frame
(or rigid vector basis) A of a vector ¥ with respect to the scalar variable — lim
t] is equal to the expression shown to the right where V(t+h)|, and
v(t)

4 denote v evaluated in A at t+h and t, respectively.
Differentiating a vector is more complicated than differentiating a scalar because a vector’s magnitude
can change, its direction in reference frame (or rigid basis) A can change, or both can change.

For example, the figure to the right shows a vector ¥ whose mag-
nitude changes but whose direction in reference frame A remains /2 fg

constant . The vector T(f+h) — F(t) measures the change in refer- KO r+h) - K(1)
ence frame A of the Vec‘cm;4 T from time ¢ to time ¢ + h. In the limit i =
r(t+h)
_ar

as h—0, the direction of é{: is parallel to T.

The second example shows a vector ¥ whose magnitude is con-
stant but whose direction in reference frame A changes. The vec-

VFLM
(® r(t+h)
tor F(t+h) — ¥(t) measures the change in reference frame A of the , : \r(h) - r(t)

A
vector T from time ¢ to time t+h. In the limit as h—0, T;%fi is
o o ‘ t
perpendicular to ¥(t). T
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6.2 Expressing a vector in terms of vectors fixed in a reference frame

When three noncoplanar (but not necessarily orthogonal or unit) vectors a;, @, a3 are fized
in a reference frame (or rigid vector basis) A,* one can show (see Section 4.6) there exist
three unique scalar functions vy, va, vz such that any vector v can be expressed as

V = vy a; + vg 8y + w3 33 (1)

When one or more of v1, ve, v3 are a function of the scalar variable ¢, ¥ is called a vector
function of t in A and one may define the vector v evaluated in A at t =t as

V@4 £ o) & + w(f) d + vs(D) &

% A reference frame (or rigid vector basis) A can be constructed by as few as three non-collinear points P, P>, Ps whose

-
a

distance from each other are constant. Reference frames and rigid bases are discussed in Section 7.2. Three noncoplanar

vectors that are inherently fized in A are: a; from P1 to P»; 3z from P to P3; and a3 = a; x as.

6.3 Partial and ordinary derivatives of a vector in a reference frame

Referring to Section 6.2, when vy, vg, v3 are functions of the scalar variables s and ¢, one
may define the partial derivative in A of v with respect to t as either

Ag= An— = e
ov A duy = vy 2 Ovg = v 2 L Vs tth)|, - V(s ity
ot _ o ALt g B+ | or |5 O lim; z 2)

When vy, v9, vz are functions of a single scalar variable ¢, the ordinary derivative in
A of V with respect to t is defined as either

A= S (N = =
dv A dvy 2 dvs = dvg = A% A . VR4 — V()4
r R A Rl ] B e, 2 (3)

6.4 Constant vectors (vectors fixed in a reference frame)

Referring to Section 6.3, when each of vy, vo. v3 are constant, Vv is said to be a constant vector in A
[or equivalently a vector fized in A]. When ¥ is constant in Al
e V has a constant magnitude, i.e., |i"| = C where C is a constant

e ¥ has a constant direction in A, i.e., v+ & = C; where C; is a constant and &; is any vector fixed in A

A ~
° % = 0  [proved by inspection of equation (3)]
Note: Certain analyses (e.g., conservation of linear momentum or conservation of angular momentum) lead to

Ay ~ . . ; a g
expressions like 7?2/! = 0. Information about ¥ is determined by setting |v| = or v-a8=0C;.

6.5 Vectors with constant magnitude

Since a vector’s V’s magnitude is a scalar, the change in |i'r| is independent

Fiw <. v 4
of reference frame or basis. If V has constant magnitude, IR the ety o 0 (4)

derivative of ¥ in any reference frame (or rigid basis) F', is perpendicular to V.
Note: This is shown in equation (4) and verifies the second conceptual example in Section 6.1.

S 5.5 Fy
Proof of equation (4): ¥-¥ = constant, hence d(vdtv) = 0. Section 6.6 gives d(%tl) =2V- ﬁ%‘f

If ¥’s magnitude is constant

Tt does not make sense to state that a “vector is constant or fixed” without specifying a reference frame (or rigid basis).
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6.6 Properties of derivatives of vectors

The following are derivative properties for arbitrary vectors i, ¥, w, an arbitrary dependent scalar variable
s, an arbitrary independent variable , and an arbitrary reference frame (or rigid basis) A.

Properties of ordinary or partial derivatives.
M(BaY) _ Mgy gy | dBXTF) _ MiLg.g 4 gk e 4 axe. A0

Section 6.12 proves the first equation i.e., the vector dot-product derivative property.

6.7 Example: Derivatives of a vector

The derivative of a vectoris substantially different than the derivative

of a scalar because a vector derivative involves a change in direction ﬁ\l
= 5 a

whereas a scalar derivative does not.

To demonstrate how the derivative of a vector can involve a reference
frame, consider a rigid body B that rotates in a plane A. Right-
handed sets of orthogonal unit vectors ay, ay, a, and by, by, b, are

- bpa N ey s
fixed in A and B, respectively, with @, = b, normal to the plane. R Ax Ay A
The orientation of Bx, ‘Ey: BZ is determined by first setting Ei = Ex _C(?S(? s:n(lz)) 8 (5)
a; (i=x,v.z) and then subjecting B to a right-handed rotation in A B‘ SH(I]( ) COSO( ) i

characterized by 0a, (fis a variable that depends on time t).

Shown below is the calculation of the derivative of the vector ¥ = x by (z is a time-dependent variable) in both

B A
B and A. Since d—? #+ ?—d;, it is clear that reference frames make a difference! ?

Time-derivative of ¥ in B Time-derivative of T in A
¥ = zby I = xz [cos(f)ay + sin(f)ay]
(5)
B 7 Al N T i Lsin(0) & =
I (:) @ by T 5 & [cos(0) Ay + sin(@)ay] + z0 [sin(f)ax + cos(f)ay]
= Bx + x 0 Bv
(5) '
. A o B -
In view of the fact that T differs from — by only one term (which is perpendicular to ¥), it is natural

to wonder how to relate them. The next chapter gives a very important relationship in equation (7.1) for
derivatives in different reference frames called the golden rule for vector differentiation, which for
this example (worked out again in Section 7.3.1) is

Hiops Bl
dr¥ _ dr A=B =
df - dt + w XxXr

*Since T is a vector, its time-derivative describes its change in magnitude and direction. Since ¥'s magnitude is a scalar,
changes in magnitude can be analyzed with scalar calculus, e.g., the time-derivative of = is simply . However, to determine
how ¥’s direction changes, we must ask “with respect to what”. For example, ©’s direction does not change in B since T is
always in the Bx direction and by, is fized on B. Conversely, as B rotates in A, ¥'s direction changes in A. The faster B spins
in A, the faster ¥’s direction changes in A. This may be demonstrated by spinning in a room while elongating a bike pump.
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6.8 Differential of a vector

Referring to Section 6.2, when a vector v is regarded as a function of n independent scalar variables
t1,...,t, in a reference frame (or rigid basis) A, one may define a quantity 4dv called the differential in A
of Vv in terms of dty, ..., dt, (differentials of the independent variables t, ..., t,). These “independent
differentials” are defined to be arbitrary (usually small) quantities that have the same dimension of ¢1,...,¢,.
With dty, ..., dt, in hand, “d¥ is defined as either?

- A - = g - A A Ans
Ay = dvy 87 + dug 83 + dug as or Adv d?&v dt, + C)afv dts + ... %dfn (6)

When ¥ is regarded as a function of a single scalar variable ¢ in A, the right-most
equation (6) reduces to the equation shown to the right. Subsequently dividing both

‘09

Ao
sides by dt gives rise to the ratio of 4d¥ to dt. dv (?) T dt
A -
Hence, although the symbol Ed% can always be regarded as a ratio of differentials, Ajy At
it can sometimes be an ordinary derivative in the sense of equation (3). @t oo

6.9 Integral of a vector

Referring to Section 6.8, when a vector Vv is regarded as a function of the scalar variable t in a reference
frame (or rigid vector basis) A, one may define the integral in A of V as

Af{}dt g (/vldt)ﬁl + (f'uzdt)ﬁg + (fvgdt) 3 (7)

For example, substituting the left-most expression of “d¥v in equation (6) for ¥ in equation (7) results in a
definition for the integral in A of the differential of v.*

A_/Ad‘_} (;) (/d’l-’l)ﬁl + (/dvz)ﬁg + (fdvg)ﬁg

= (1,’1—!—(:1)51 -+ (vg+c:g)§g + (t)3+c;g)§.3

—

= VvV + ¢ where € is a constant vector in A (i.e., € is fixed in A)

6.10 Optional™: Limit of a vector in a reference frame

Referring to Section 6.2, when v is a vector function in reference frame (or rigid basis) A of scalar variables
s and t, the vector limit in A of Vv as t —1 is defined as

lim_V(s, )|, = [limf ’Ul(S,t)] a; + [Iimﬁ Ug(&‘,t)] as + [limfvg(s,t)} R (9)

t—1 t— 1t t— 1t t— 1%

An—
3 e ; s A : o s ov A v o 8v2 3
The equivalence of the definitions of “d¥ in equation (6) is shown by substituting D @ O a; az . 3—1 3

(i =1,2,...,n), into the right-most expression for “dv in equation (6) and factoring on &;, #z, &3. Next, t.he coefficient of
a; is seen as the differential of vy, i.e., dv; i E&% dtr + Bt dta + ... i dt,. Similarly for the coefficients of az, as.

*Section 10.7 shows the utility of equation (8) for integrating acceleration to find velocity and position.
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To connect vector limits with vector differ- Hs,t+h), — Hs Ol a [ S B = gl B

- v i ... . : 2L ) A . 5 s o
entiation, apply the limit definition in equa- ,}Lmo I ) rzhi.no h al
tion (9) as shown to the right. r i e ) 1

(9) 2 + | tim LQ(S,f-I-."t]) va(s,t) & (10)
Next, use the definition in equation (1.25) SRR ! .
for the partial derivative of the scalar v; + | lim Ua(s't-l_h; — va(s:?) A3
h— 0 1

(i=1, 2, 3) with respect to ¢ (as shown below). = =

Lastly, using the definition in equation (2) proves how vector limits are related to vector differentiation.

(st R, — (5.1 4 duy . Buy .  Ous . Ov
lim : : — — — — — = — 11
h—0 h (10,1.25) Ot A % at 2 T at 23 (2) Ot )

6.11 Optional™: Differentiation with respect to a vector and gradients

Sometimes a scalar function such as temperature depends on a vector such as a position vector.

If a scalar F' depengs on a vector v, it is useful to define
the vector denoted V3 F in equation (12) where ay, ay, a, |g / OF = (12)

A JF ~ aF =
V{;F—Tia Ta +7anz

. AL~
are any orthogonal unit vectors and v; =v+a; (i=azy.z).

The quantity 6{;1‘7 is called differentiation of F with respect to Vv and is invariant with respect to
the choice of basis vectors ay, ay, a,. When ﬁ‘—,F produces a force vector, the scalar function F' is called
a force function. When v is a position vector, 6;F is called a spatial gradient (and is frequently
denoted without the subscript, i.e., VF ). If F'is a continuous function that describes the surface of an
object, 6‘—,F is normal to the surface of the object.

Example of differential geometry: Normal and tangent to a circle

A circle can be defined as the locus of points in a plane that are
a distance r (called the circle’s radius) from a point B, (called the
circle’s center). For example, the figure to the right shows a circle
of radius r that is centered at point B,.

The position of a point ¢ on the circle’s periphery from point B, can
be expressed in terms of the scalars x and y as

9B = ¢b, + ygy

where Ex, By, Bz are right-handed, orthogonal, unit vectors with BZ
perpendicular to the plane of the circle.
Q/Bo

A mathematical definition of a circle is |F = r which results
in the scalar relationship F' to the right between z, y, and r.

When a scalar fLLIlCtiOll F describes the boundary of an object, the 6}7 OF ~ oF B
spatial gradient VF' is normal to the boundary. 612) Oz E
With #9/Be — g by + yby, VF can be expressed as shown right. — 92b. + 5D
This gradient VF calculates an outward normal vector i at fi=ab, + yﬂy

point @ and a vector t tangent to the circle at point @ (directed T = hoxd = “.'y B + Igy

as shown in the figure).

Note: Homework 3.13 calculates the normal and tangent for an ellipse.
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Gradients are used for analyzing a dynamic celt (rattleback) at www.MotionGenesis.com (GettingStarted link)

6.12 Optional™: Proofs

Proof of vector dot-product derivative property

The proof of the first equation in Section 6.6, i.e., the vector dot-product derivative property starts by
expressing the arbitrary vectors @i and Vv in terms of an arbitrary set of orthogonal unit vectors ay, ay, a,

fixed in an arbitrary reference frame (or rigid basis) A as®
U = uz8; + uyay + u; a, V = yz8y + vyay + v, 3, (13)

Forming the scalar quantity -v and differentiating with respect to the scalar variable ¢, one finds

-v (=3) Uz Vg + Uy vy + Uz U,
1
G 14
d(u-v) ; : . 4 . . =
q = Up Uy T UgVUp + Uy Uy T+ UyUy + Uz Uy + Uy VU,
Aq Ao
The next step is to form the right-hand side of the equation being proved, i.e., g;l -V + - —-gfl, as
Ay A
LA ax + 1, ay + U.a Gl v Up Vp + @ +
—_— = Ty a i, a —_ = 1 Uy U Uy v
dt (a3 % ¥ = dt a °°F el e
A A (15)
dv A . e . L dv ; : ;
i (E) Uz @y + Uyay + U: 8, u- 7 Uy Vg + Uy Uy + Uy Uy
Combining the two right-most equations in the previous set of equations gives
A, A,
L + i i ' + Gy vy + U v, o Up Oy + Uy Uy + Uzt (16)
-V - = v gy 1 1 U Uqy U U Vs
Jt dt (15) Uy Uy y Vy z Uz x Uz y Uy z Uz

This proof concludes by viewing the equivalence displayed in equations (14) and (16), and recalling that
ay, ay, a, are arbitrary vectors fixed in an arbitrary reference frame (or rigid basis) A. Hence, for arbitrary
reference frames (or rigid bases) A and/or B,

<l

e Ag Ao B B
d{lzitv) — (af{tu{}_k 4- av _ du_i»,_l_ﬁ_

S

dt — dit

Note: The vector dot-product derivative property is used to prove the uniqueness and existence of the golden rule for

vector differentiation [equation (7.1)] in Section 7.5.1.

®The proof of the vector dot-product derivative property in Section 6.12 does not require, but is greatly simplified, with
orthogonal unit vectors. To do the same proof with non-orthogonal unit vectors ai, a», @3, one must write @+ ¥ in terms of
Ay +Az, a;-az, and @-a3 (which are the cosines of angles between the unit vectors) and then note that for a rigid basis

. e n
A, the angles between these unit vectors are constant - and hence d(ﬁf—a’—) =0 (5,7=1,2,3)
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Chapter 7

Angular velocity & angular acceleration

Important formulas for angular velocity and angular acceleration. (See examples in Hw 6)

Golden rule for vector differentiation
Simple angular velocity

Angular velocity negative property
Angular velocity addition theorem

Angular velocity and arbitrary vectors

Angular velocity and basis vectors

Angular velocity and rotation matrices

Partial angular velocity (Kane’s method)

fav _ fav
dt (71 df: i
" o, 0
AsB _ BgA
WP = WP 4
See equation (2)

AC:}B — ( AdBV
(7.3) - dt
See equation (4)

WP« v
when A is fixed in both 4 and B

BQC + C&:}D

A Az
—~ o~ —~ —~ d . —~ —~
b,) by + (P2 by by + (-5 -by)b

See Section 26.2 (also for virtual angular displacement)

Z

A; A~ B B; A-B

B’s angular acceleration in A AzB 2 ia“& = _@f‘i’_

(7.8) t (79) dt
Angular acceleration addition theorem 8% = g% 4 B¢ 4 ¥ Bv

(7.10)
Angular acceleration negative property ab ( = ) gt

7.11

=

7.1 Angular velocity concepts: Moon and Earth celestial systems

Each of the two pictures below depict a moon M in counter-clockwise orbit about a planet E. From the

. E—~M : f ;
pictures, one can see whether “w™ (M’s angular velocity in E) is zero or non-zero.

1

time 5

:
_/_L\ A
AL timeq
[imeot_ )
E~M = o

w =]0

5

(M’s orientation in F is constant.)

EI:J M ?1: 6

G

time 5

|
|
time '\ )

(M’s orientation in £ changes.)

! Although the left-moon’s angular velocity is 0, one can construct a rigid vector basis B so that " # 0 by using an
Earth-to-Moon pointing vector and a vector perpendicular to the orbital plane. Note: A particle only translates whereas a
rigid body can translate and rotate. A particle can translate around Earth - but the particle is not “rotating” (particles do
not possess orientation). Conversely, a rigid body can translate around Earth and its orientation may change.
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