6.12 Optional: Proofs

Proof of vector dot-product derivative property

The proof of the first equation in Section 6.6, i.e., the vector dot-product derivative property starts by
expressing the arbitrary vectors 1i and v in terms of an arbitrary set of orthogonal unit vectors a,, ay, a,
fixed in an arbitrary reference frame (or rigid basis) A as*

U = ugay + uyay + u;a, V = v 8 + vy8y + v, 8, (13)
Forming the scalar quantity -V and differentiating with respect to the scalar variable ¢, one finds

G-V = U0 + uyvy + U v,
(13

= UpVUp + Up Uy + Uy Uy + Uy Uy + UV, + Uy Uy

A A
. . ; . A = sl
The next step is to form the right-hand side of the equation being proved, i.e., Vi di > 38

-

‘Ui ‘i . . :
= Z g8y + Uy 8y + U8, E-V(E) iy Up + gy Uy i T v,
(13) (15)
A, A e
AT TR SR ek b s N x A ;
o = Ugax + Uyay + U3, HOE(E) Up Up + Uy Uy + Uy Vs
(13)
Combining the two right-most equations in the previous set of equations gives
A Ay
%-* + ﬁ-% = UpVp + Uyvy + Uy + Up Uy + Uy Ty + Uy Dy (16)

This proof concludes by viewing the equivalence displayed in equations (14) and (16), and recalling that
a,, ay, a, are arbitrary vectors fixed in an arbitrary reference frame (or rigid basis) A. Hence, for arbitrary

reference frames (or rigid bases) A and/or B,

el

d(-v
il

Az B B
dv _ di ., o = AV
&t T Tdt YT U

A=
) - Mi.g g

Note: The vector dot-product derivative property is used to prove the uniqueness and existence of the golden rule for

vector differentiation [equation (7.1)] in Section 7.5.1.

*The proof of the vector dot-product derivative property in Section 6.12 does not require, but is greatly simplified, with
orthogonal unit vectors. To do the same proof with non-orthogonal unit vectors d;, @z, a3, one must write ii- ¥ in terms of
@, -3y, @;-83, and & -33 (which are the cosines of angles between the unit vectors) and then note that for a rigid basis

? ?

d(a;-a;) e
A, the angles between these unit vectors are constant - and hence ——-—L!‘H =0 (i,5=1,2,3).
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Chapter 7

Angular velocity & angular acceleration

Important formulas for angular velocity and angular acceleration. (See examples in Hw 6)

Simple angular velocity
Angular velocity negative property
Angular velocity addition theorem

Angular velocity and arbitrary vectors

Angular velocity and basis vectors

Angular velocity and rotation matrices
Partial angular velocity (Kane’s method)

Golden rule for vector differentiation

A= B -
dV . JX - B -
& (7:2) +0A when A is fixed in both A and B
ApB ' BoA

(7.3)
AE"D — AE’B o B&}C + CG‘JD

(7.4)
See equation (5)

A - —~ —~

-5 _ ,db, = =~ Ab, ¢ “db
B 5 (BB + (B, + (s

See equation (7)

See Section 25.2 (also for virtual angular displacement)

B’s angular acceleration in A
Angular acceleration addition theorem

Angular acceleration negative property

AsB & AU 4P i

@ =T & T
(7.8) (7.9)

AaC — AaB 4 B&C + AEJB XBI:’C
(7.10)

AzB _ _BzA
(7.11)

7.1 Angular velocity concepts: Moon and Earth celestial systems

Each of the two pictures below depict a moon M in counter-

. E-sM s " -
pictures, one can see whether “@™ (M’s angular velocity in E) is zero or non-zero.!

clockwise orbit about a planet E. From the

Al

E'G-'J.Mrr — 6

A
time

ol

time ¢

(M’s orientation in F is constant.)

™)

time ¢
timeo

.E.bﬁf __)é 6

%

time,

X

(M'’s orientation in E changes.)

'A particle only translates whereas a rigid body can translate and rotate. A particle can translate around Earth - but

the particle is not “rotating” (particles do not possess orientation). Conversely,

E— M

a rigid body can translate around Earth and

its orientation may or may not change. Although the left-moon’s angular velocity “@*’ = 0, one can construct a rigid vector
basis B so Fp® 7# 0 by using an Earth-to-Moon pointing vector and a vector perpendicular to the orbital plane.
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7.2 What is a reference frame?

A reference frame is a rigid 3D object in which points, curves, surfaces, unit vectors, rigid vector
bases, rigid frames, rigid bodies, and other rigid objects can be fixed. Both translational motion (e.g.,
a point’s velocity or acceleration) and rotational motion (e.g., a rigid body’s angular velocity or angular
acceleration) are measured with respect to (in) a reference frame.

Examples of rigid objects that may be regarded as a reference frame: rigid body, rectangle, circle, plate, parallelogram,
shell, box, cylinder, and sphere. It can be helpful to construct non-physical (non-material object) reference frames whose only

purpose is to be a convenient place for fixing points, vector bases, curves, etc.

7.2.1 Orientation of a rigid body (or reference frame)

A rigid body B’s orientation characterizes its alignment relative to a vector
basis (or other rigid body or reference frame). Orientation may be measured by

; shs ; . B Rigid body B
inscribing three non-coplanar unit vectors on B that are ordered into a right- Sith A haks
handed set (i.e., a right-handed, unitary rigid vector basis fixed in B).

Although B’s orientation relative to a reference frame A is unique, its mea-
surement is not because of the freedom to fix bases on B in different ways.
Sometimes it is desirable to fix multiple bases on the same rigid body. For ex-
ample, the top-figure shows one basis whereas the bottom-figure shows three 2

bases. The measurement of B’s orientation in A requires extra equipment, E:ﬁ']dsblf:i‘ug
e.g., a rigid vector basis fixed in B and a rigid vector basis fixed in A.

Note: Reference frames, rigid bodies, and rigid bases have orientation. Points and particles do not have orientation.

7.2.2 Differences between a vector basis, rigid frame, and reference frame

e A vector basis may span 1D, 2D, 3D, ..., space (e.g., Euclidean space — the 3D world we see).
Although a vector basis implies space, it does not imply time.

o A 3D rigid vector basis (e.g., an orthogonal set of unit vectors) is special in that the
angles between the basis vectors are constant. From “rigid” and “constant”, we infer
that a rigid basis must include a sense of time. With two 3D rigid vector bases, one may
measure relative orientation, angular velocity, or angular acceleration.

e A reference frame is a rigid 3D object, defined as an infinite set of non-collinear

points whose distance between each pair is constant. A reference frame N can be Reference frame N

constructed by as few as three non-collinear points whose distances from each other
are time invariant (constant). From “distance” and “rigid/constant”, we infer that a '%f'
reference frame includes both space and time. Using a point and vector basis fixed in N,
an arbitrary (possibly moving) point Q’s position can be measured. Velocity (and acceleration)
of a point requires a reference frame (this cannot be done with a rigid vector basis).

e A rigid frame is an orthogonal unitary basis and a point (“origin”).

The figure to the right shows two rigid frames fixed to a reference frame (rigid body) B.

7.2.3 What is a Newtonian (inertial/fixed) reference frame?

A Newtonian reference frame is a non-rotating, non-accelerating reference frame in which F=ma
accurately predicts forces and motion. Often, Earth is used as a Newtonian reference frame, but it can
prove inadequate for predicting certain forces or motions, particularly for celestial bodies or long-term
motion (hours*). Perhaps perplexing and confounding, the rules are as follows:

e A Newtonian reference frame is a reference frame in which F = m a applies.

e F = ma only applies in a Newtonian reference frame.
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7.3 Angular velocity and the golden rule for vector differentiation
The angular velocity ‘P characterizes the time-rate of change of orientation of reference frame (or rigid

vector basis) B in reference frame (or rigid vector basis) A. “@P has the defining property (called the golden
rule for vector differentiation) that for any vector v, relates time-derivatives of ¥ in A and B as

*

Reference frames, rigid bodies, and rigid vector bases have angular velocity. Points and particles do not.

Ad any\_‘/ector — Bd any\?ector
dt dt

+ AE'JB X any{’ector

Equation (1) is also called the “Transport theorem for vector differentiation’.
The vector ¥V is arbitrary, e.g., a unit vector, position or velocity vector, or translational/angular momentum vector.

Angular velocity is defined by its property in equation (1). This is analogous to an identity matrix I whose defining property
is I«X = X*xI = X (where X is any matrix), and analogous to a zero matrix whose defining property is 0+ X = X.
Similarly, the unit dyadic 1 is defined in Section 15.1 by its property 1-% =% T=3% (where ¥ is any vector).

Although equation (1) defines angular velocity, one cannot directly solve for “@? in equation (1) with a single vector ¥ and
its time-derivatives in A and B. However, ‘&% is uniquely defined by equation (1) since equation (1) is valid for any vector
¥. A unique expression for “@% can be found via two non-parallel vectors (e.g., p and @) and their time-derivatives in A

and B. For more information, see the uniqueness proof in Section 7.5.1 and equation (5) and its subsequent comments.

Although Euler discovered most of the governing properties of angular velocity, the first appearance of equation (1) with
the explicit display of A and B in derivatives and angular velocity was by Thomas Kane in 1950. Until then, the equation
was written in a form where the “fowing derivative” on the right was written with a § or D to distinguish it (in a manner
hard to comprehend) from the derivative on the left. The name “golden rule for vector differentiation” and the use
of equation (1) as a definition for angular velocity were invented by the author, students, and colleagues circa 1995. The
existence and uniqueness proof in Section 7.5.1 was created by the author in 2012.

7.3.1 Example: Angular velocity and vector differentiation

The golden rule for vector differentiation in equation (1) is usually

more efficient for calculating vector derivatives than definition (6.3). J
For example, Section 6.7 used definition (6.3) to calculate the time-derivative k.
of vector ¥ = z b, in reference frame A. Knowing 47 = ébz, the time-
derivative of ¥ in A is calculated more efficiently as
Fast: Golden rule Slow: Definition of vector derivative
A B = = P
dr T - r = x |cos(f)ay + sin(f)a
W s T ) ® os@at sn@)a)]
dt () dt dr .
—~ .~ ~ — - ) Ci 9 a 1 6 a -Si a S a
= 3B, + (85,) x (wB) B o m£os( )a}fi— sin(f)ay] + x0 [-sin(f) &, + cos(6)a,]
_ ;i:gx +$égy (;bex + z6by

The golden rule for vector differentiation makes it easy to also calculate acceleration (2"%-derivative of ¥ in A) as

(F—26%) by + (2&0b, + z6) by, whereas calculating acceleration with the definition is much more tedious.

7.3.2 Example: Vector differentiation and angular momentum — spinning book

The angular momentum principle for a rigid body B in a Newtonian reference frame N is

N = -,
N dH M is the moment of all forces on B about B.., (B’s center of mass)
—df H is the angular momentum in N of B about B..,
Copyright © 1992-2016 Paul Mitiguy. All rights reserved. 49 Chapter 7: Angular velocity/acceleration



Given: NGB = b + wy b + ws bZ NoP is B’s angular velocity in N
& — I, w b + L, wy b + 1, w. bz Iz, Ly, L.. are constants (moments of inertia)
M = 6 No external forces

where wy, wy, w, are time-dependent variables and Bx., By, b, are right-handed orthogonal unit vectors
fixed in B. Differentiating Hin N gives the following equation that governs B’s rotational motion.

—~ =

Loop + oLy wswy b + MLyoy + Go—L)wswilby + [Loox + Uy —Lg)wywsllb; = 0

7.3.3 Simple angular velocity

Consider two reference frames (or rigid vector bases or rigid bodies) A and B.
When B’s orientation in A changes in such a way that there exists a unit e
vector A that is fixed in both A and B, then B is said to have a simple '
angular velocity in A given by equation (2), where 6 is the angle from a
vector fixed in A to a vector fixed in B, both of which are perpendicular to
.2 The sign (£) of @) is determined from the right-hand rule. If increasing
6 causes a right-hand rotation of B in A about +3:, the sign is positive,
otherwise it is negative. Equation (2) is proved in Section 7.5.4.

B = + aX [

When A is fixed in A and B

@ A major obstacle in 3D kinematics is calculating angular velocity Since angular velocity is complicated, most introductory
textbooks specialize angular velocity to @) and restrict A to be fixed in both A and B (i.e., planar 2D prob}:ams)

For general 3D rotations [see equation (9.1) in Section 9.1], X is not fixed in Aand Band “@" = 4 AR sin(f) tA + [cos(6)—1] A x 4

> B B\ = - . -
When A is fixed in both A and B, —C‘ii% — 0 and the general 3D expression simplifies to equation (2).

Simple angular velocity example - rolling wheel

As shown in Section 7.3.8 and again to the right, wheel B has a simple
angular velocity in airplane A of BE = 'Gb

Note: ‘@7 is a simple angular velocity because b, is fixed in both A and B.

Note: there is no point of B that is continually fixed in 4, i.e., B is not “rotating about its center” in A.

Example: Simple angular velocity &P for a pendulum

The figure to the right shows a rigid metronome B that swings in a reference frame
A. Right-handed sets of orthogonal unit vectors bx, by, ., and @y, ay, a, are fixed

in B and A, respectively. The angle gp is the angle from ay to Ex with +a, sense.

1. Identify a unit vector X that is fixed in both A and B: A= b, = 8,

Identify a vector &, fixed in A and perpendicular to A: &, = a, or a; =ay

Identify a vector b | fixed in B and perpendicular to X b 1L = Bx or b i = Ey

Identify the angle 8 between &, and b, and calculate its time-derivative.

SIS

Use the right-hand rule to determine the sign of . In other words, point the four fingers of your
right hand in the direction of &y, and then curl them in the direction of b 1. If your thumb points in
the direction of A the sign of Ais positive, otherwise it is negative.
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The chart shows various choices for 8 +
and b | and corresponding expressions a, | by qB iB + | ¢ b,
le between & b o b .
for 9‘ (the angle be W.eenAiuB and b, ) and ac | by ng“ Y5 | 4B A B bz
the sign of A. Notice “@" does not de- =~ B = ;
eyl - Ay | Dy | m—0B | “gB. | = b
pend on choice of @, and b . = ~ x e
ay |by | g | g | + |dBb

7.3.4 Angular velocity negative property

B’s angular velocity in A is the negative of A’s angular velocity in B.®

2The proof of equation (3) is in Section 7.5.6.

7.3.5 Angular velocity addition theorem

The angular velocity addition theorem relates the angular A0 _ AnB . BaC | CaD

velocities of reference frames A, B, C, and D. ) ) ; ) (4)
Equation (4) is proved in Section 7.5.5.

7.3.6 Angular velocity example: Chaotic plate pendulum

The figure to the right shows a plate B connected by a revolute joint to a rod A so
that B rotates freely about A’s long axis. Rod A is connected to a fixed support N
by another revolute joint. Note: The revolute joints’ axes are perpendicular not parallel.
Right-handed orthogonal unit vectors ay, ay, a, are fixed in A with @, parallel to
the revolute joint connecting A to N and 3, parallel to the axis of the revolute joint
connecting B to A. To calculate NEJB, proceed as follows.®

N~ A s i G i -
e "W = g4qax A has a simple angular velocity in N since ay is fixed in both A and N.
b (2)
(] Aw (=) 4B a, B has a simple angular velocity in A since &, is fixed in both B and A.
N"‘ B HA — B . —~ . —~
o W w -+ Aw = gaax + gpa, Angular velocity addition theorem.

b
i'i“

% Many textbooks define angular velocity as 6X. This definition encounters serious obstacles in proving the angular velocity

addition theorem of equation (4) and the golden rule for vector differentiation in equation (1). It is also deficient in calculations.

For example, to start with “@® = §A and to arrive at "@” = §a 8. + ¢pa, one has to discover a (non-physical) angle 8
whose time-derivative is 6 = \/Ga2 + ¢z2 and to somehow know that A = d48x+dp8s

7.3.7 Optional: New formula for angular velocity (Mitiguy, 1995)

It is difficult to calculate (B s angular velocity in A) directly from its defining property in equation (1).
A general way to calculate AwB is to use any non-coplanar vectors p, d, and ¥, and the time-derivatives
in reference frames (or rigid vector bases) A and B, as?

A_. B_, A B A_, B_,
AgB _ |(d4_99y .5 4 (FE_dF o & 4 (9P_dB) oozl mxg -
b= ) TP 4 = )b, & ()G e / [Bhed < §) 5
A, B, A, B._, A=y B
= (BB 5,5 - (BB 5uq + (PP g7
dt  dt dt  dt dt  dt

Equation (5) has features that deserve special attention.

*The proof of equation (5) is in Section 7.5.2. To our knowledge, the first appearance of equation (5) was communicated
from Paul Mitiguy to Thomas Kane in 1995. If you find an earlier source, please let us know.
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1. The second expression in equation (5) calculates “@% using only two non-parallel vectors p and §
and their time-derivatives in A and B by defining ¥ £pxq and T £ ® : N

2. Equation (5) is basis independent as the vectors P, 4, and T are any non-coplanar vectors. Equa-
tion (5) does not involve matrices, unit vectors, bases, coordinate systems, angles or position vectors.
For example, P can be a unit vector, position vector, velocity, acceleration, or angular momentum.

3. The denominator in equation (5) is non-zero as long as P, g, and T are non-coplanar. This has
substantial computational advantages over [43, eqn. (1), pg. 68].

4. Equation (5) requires a minimal amount of information, namely two non-parallel vectors and their
time-derivatives in A and B. This formula is more general than the basis-dependent formula for R
first found in [35, eqn. 2.1, pg. 16] and later found in [56].

5. This formula simplifies when ¥ is a unit vector fixed in both A and B.? _This special case give rise to
many authors’ overly-simplistic definition of angular velocity, namely @T. This simplistic definition
does not lead to the very important property of angular velocity in equation (1), and its use is
generally limited to planar (two-dimensional) kinematic analysis.

7.3.8 Optional: Angular velocity and orthogonal basis vectors

One way to calculate the angular velocity of a reference frame B in
a reference frame A is to fix right-handed sets of orthogonal unit
vectors by, by, b, in B and perform the operations in equation (6).2

“Equation (6) follows directly from equation (5) by using p = by, d = By,
and ¥ = b,. Equation (6) is also proved separately in Section 7.5.3.

A~ A~ A
o db. —~ .~ I dby T\ %
A‘-’JB = ( dt 'bz)bx + (dT?a.bx)by + (?Ex'by)bz (6)

Example: Angular velocity and orthogonal basis vectors

The following figure shows a rigid aircraft A in level horizontal flight above a hilly road and a rigid wheel
B rolling to the right on the road. Right-handed orthogonal unit vectors ay, ay, a, and by, by, b, are
fixed in A and B, respectively and ?RP is the rotation matrix relating ay, ay, 8, to by, by, b,.

To calculate WP with equation (6), use the definition of vector differentiation [equation (6.3)] for the
vector derivatives in equation (6) in conjunction with the rotation matrix to yield

‘db

& oy nO)08 — con(0)08y = Ohy
A —~

db . . n—_—"
dty {;) cos(f)fax + -sin(d)fay, = 0Oby
“db, .

dt  (6.3)

Substituting these derivatives into the expression for G gives

— —~

D% = (bs-by)bx + (0-by)by + (-fby-by)b, = |-db, 5 0 0

Before leaving this example, there are three concepts worth mentioning.

e 43B is a simple angular velocity because the vector @, is fixed in both A and B.
See Section 7.3.3 for a more efficient method for calculating simple angular velocity.

3 A unit vector is fixed in a reference frame when its direction is invariant in that reference frame.
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e Since B’s center is not fixed in A, it is improper to say B “rotates about its center” in A

There is no point of B that continually remains fixed in A. See Homework 9.14 for instant cent
s niers.

e In general, rotation can be studied separately from (and before) translation

7.3.9 Optional: Angular velocity and rotation matrices A
It directly follows from equation (6) that " can be calculated '
from the elements of the ®RP rotation matrix (relating two sets of i
right-handed orthogonal unit vectors a,, a,, a, and Bx, By, Ez). /3‘:?’; _____
aRb, Bx B E AEJB . . .
y z = (R + R
ERbE - R, R @ = B fy ot R
o | + (Rxx Ry, + Ryx Ry, + Ry R,)by (7)
ag sz Rzy Bzz e (RX.Y Rxx + R.Y)’ Ryx + RZ_Y sz) gZ

Because equation (7) contains time-derivatives of elements of the RP rotation matrix, it is clear that
angular velocity is a measure of the time-rate of change of B’s orientation in A.

Optional: Example: Angular velocity and rotation matrices

Referring to the previous example (Section 7.3.8). it i it i i i
B o oo exaul ( -3.8), it is possible (albeit inefficient) to use equation (7) to
8. ee Section 7.3.3 for a more efficient method for calculating simple angular velocity.

(?) (RXZ ny + RJ’Z Ryy + RZZ Rzy)bx 2 (Rxx sz + R.YX Ryz + RZX Rzz)g.}’ + (RX.Y Rxx e R)’.Y R_','x =t RZ}’ Rz:\c)bz

A— B
w

= 040+0) by + (0+0+0)B, + [-sin*(6)d — cos(6) 6 + o] b, = |-68,

7.4 Angular acceleration

Consider two reference frames (or rigid vector bases) A and B. gl & 'd %" 8

B’s angular acceleration in A is defined in equation (8). T e

Alpplying the golden rule for vector differentiation in equation (1) to equation (8) B, A~B

yields an alternate (and sometimes computationally more efficient) expression for “a>. e dd:;) (9)
(1,8)

Note: Points and particles do not have angular acceleration.

7.4.1 Angular acceleration addition theorem

The angular acceleration addition theorem relates the e A
” = ~ B = . s
angular accelerations of reference frames (or rigid vector bases) a” =@’ + % + P« BC

A | : : 10
, B and C' as shown in equation (10). The proof is described in Homework 6.24. o)
Shown right: Although the angular velocity addition aRd = apgb , bpe , cpd

theorem is analogous to rotation matrix multiplica- AnD AnB B-C C-D

tion, the 3D angular acceleration addition theorem AaD = A-B ipe U

1s more complicated. €, = & st a + other terms!

7.4.2 Angular acceleration negative property

B’s angular acceleration in A is the negative of A’s angular acceleration in B. ‘&P — -BzA (11)
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7.4.3 Angular acceleration example: Chaotic plate pendulum

The figure to the right shows the system considered in Section 7.3.6.
Using the definition of B’s angular acceleration in N, Na?B is calculated as®

N -

N=B a deB
(8] —

8  dt

M (Gadx + dpay) “U(4adyx + 4pa,)
- AR IR SARCT AR 4 0 x (4B + pB)
dt (1) dt
] (iAax + qBaz - QAQBay

" » . .- i - B =
“Note: Even when ga and ¢p are constant (i.e., Ga =0 and g =0), &P -+ 0.

7.4.4 Optional: Second time-derivative of a vector in a reference frame

The 2" time-derivative of any vector ¥ in a reference frame (or rigid vector basis) A can be calculated as

A2 B2 B ;-
A—‘B = —‘B — B = —aB dv
gt,z" - gt;" + B xv + W< (WP xv) + 2% % (12)
The proof of equation (12) is in Section 7.5.7.

Example: Consider the position vector ¥ from a point fixed in A to a point ¢) moving on a rigid body B.

A
Q’s velocity and acceleration in A can be calculated e = % and
A AP e . : . e
3@ = E}, written in an efficient (and perhaps more familiar) way as
G0 = e 4 BBy
(1) ~~ ——
relative tangential
= i, - ., - = SRR
® Az0 — Bg@ 4 4B xF + WP x(BPx® + 2WExHC
(12) —— N — ~ - ~ S ~
relative tangential centripetal Coriolis

7.5 Optional: Angular velocity proofs

7.5.1 Proof of existence and uniqueness of the defining property of angular velocity

The proof of existence and uniqueness of the golden rule for vector differentiation in equation (1)
begins with the vector dot-product derivative property presented in Section 6.6 and proved in Sec-
tion 6.12, namely for arbitrary vectors i and ¥ and arbitrary reference frames (or rigid bases) A or B,

T A= o . Bio
d(udtv) = gtu'vJ’ﬁ'd_ = & "V T u ffltv (13)

Substituting ¥ for 4 in the previous equation is used to show ddjti - v is independent of A or B:

- A B
di© - v) gAdG 2 — iﬁ.* Ad‘?.v:i{‘i.q =5 (Ez_i‘i).{;:o
dt (13 dt 3) ~ dt dt dt dt  dt

<
4
|

A, B,
Since the difference —dd—t-‘i — %‘5 is perpendicular to ¥V and since the cross-product of an as-of-yet

unknown vector @; with ¥ produces a vector perpendicular to ¥, one can write the next equation below.
One can then form the dot-product of this next equation with an arbitrary vector u.
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This process is repeated in the second line below — starting with , introducing another unknown vector
Ws, and then doing the dot-product with v.

‘v uw i 0 2 “av v
= — v i ok TR R — —
: dt ! = dt u o iU = w; XxXV-4d
7 B,
G a o
dt dt 2 == +_ﬁdt'vﬁ_dt V = ws X Uu-v
d(v - 1) d(v - 1) . . e
dt - dt =(WQ*L|J1)'(LIXV)

Adding the 1% and 2" right-most equations in the previous set and using the vector-derivative property in
equation (13) twice produces the last equation in the previous set (whose left-hand side simplifies to zero). Since
both U and V are arbitrary vectors, il x ¥ is neither 0 or perpendicular to the difference of the as-of-yet
unknown vectors @s — @;. Thus,

O:(GQ—Ql)(ﬁXi}) = 52—91:6
Since @ = Wi, the proof of uniqueness for angular velocity is complete and the subscripts 1 and 2 are

removed from the @ symbol. Since @ is associated with vector derivatives in reference frames (or rigid bases)

A and B, @ is denoted with superscripts A and B as ‘P,

7.5.2 Proof of the new formula for angular velocity

The proof of equation (5) begins by introducing three arbitrary non-coplanar vectors P, @, T (which form an
non-orthgonal vector basis). Section 4.6 shows that any vector (including AGJ'B} can be written in terms of p,
d, T, and the scalars a, 3, v as

A-B

w” =ap + /4 + AF (14)
B o o - e L iy ol
a:Aw-qxr ﬁzAwB-rxp _AwB-pxq
= = — e V5T T oam e
prgxFt q-Txp - pPpxq
Rewriting «, 3, and ~ by interchanging dot-products and cross-products gives
B o o A2B _ = = AB o
o B7xd- ¥ g @xT-B L _ @'xp-g a1s)
Ppxdq- T pxq-*T pxq-T
In view of equation (1), one may write
A, B
dp dp B A 5
== = % AsBagn - 5 dp dp
gk ay dt p WPxp = 2 _ A (16)
dt dt
‘4§ _ 'ag | ap ‘vg  'ag
e RTINS | - = 4B . o
E o & T U - Ll Bl el (17)
A B A B
dr dr dr dr
& _ O B o R L
i @ da %3 4 dt dt (18)

Substituting the right-hand sides of equations (16-18) into equation (15) produces the first expression in
equation (5). The second expression in equation (5) results from the fact that for any vectors p and ¥,

— A, A B._, B AE 151 T A
A O " SN S
dt dt dt ~ dt P e w0 P
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7.5.3 Proof of angular velocity and orthogonal basis vectors

One way to calculate the angular velocity of a reference frame B in a
reference frame A is to fix right-handed sets of orthogonal unit vectors
by, By, b, in B and perform the operations in equation (6).

A proof of equation (6) starts by applying equation (1) (the golden rule for vector differentiation) to each of
B b = . . . - i =

by, by, b, and noting %b] =0 (i=xy,2). Secondly, the vector equations are dot-multiplied with by, by,

Be respectively, (as shown below). Thirdly, equation (2.10) is used to rearrange the scalar triple products.

Next, the relevant cross products are performed.

Ab. e AdBX.By:AE:BxEX-By B TR NI
7 (?) X by dt (2.10)

Adgy A‘;.JB = @.BZ — A(:)Bxgycgz — AE}B-BYXBZ — _‘B-Bx
il x by dt (2.10)

A —~

A = o~ —~ -~ —~ ~ —~
@b, _ s 1 s § = P xb,-B, = “4WP-B,xby = “GE.b,
& z dt (2.10)

Equations (4.1) and (4.3) show “@® can be expressed in terms of by, by, b, as given in the first equation
below. Upon substitution of the previous expressions for 55 . b; (i =x,y,2), one arrives at equation (6).

WP = (A‘:’B ’ BX) by + (A‘DB ) B}) by + (A‘DB + bs) gz

A A A
dby o .o db, ~ . =~ dby
:( dt_ bZ)bx W ( dt bk)by T+ ( dt by)bz

7.5.4 Proof of simple angular velocity

The following figure shows a rigid vector basis A consisting of right-handed, orthogonal, unit vectors a,
@o, A; a rigid vector basis B consisting of right-handed, orthogonal unit vectors B, Bq, A; and the rotation

matrix relating these two sets of unit vectors. Note: A is fixed in both A and B.
To prove equation (2), start with equation (6) where B, B3, A play the role of by, by, b, respectively.

A5 A~ A5
B, ~. 5 ) B, - .+
— B 2 1
= ey s il + LT gy A
W= (2 NB+ (BB + (B
The definition of vector differentiation [equation (6.3)] and subsequent use of the rotation matrix yields
A -~
2—‘? = -sin(0) 6@, + cos(f)fay = 6P,
A —~
d - e -
df? o -cos(f)@a; + -sin(f)fa; = -6
dt (6.3)
Substituting these derivatives into the expression for & gives a; Qs 5\
BP = (0B,-X)B, + (0:-B1)By + (6ByBy)X = 63 R
Iy By | -sin(d) cos(d) 0
which shows “@Z = X and completes the proof of equation (2). ) 0 0 1
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7.5.5 Proof of angular velocity addition theorem

The proof of equation (4) begins by introducing an arbitary vector v

reference frames (or rigid vector bases) A, B, C, and D and using equation (1

relationships below.

that is a function of time ¢ in
) to write each of the four

These four relationships are then manipulated by: substituting the right- A B
hand side of the last equation into the left-hand side of the first equation; _d;v oL ﬂ + B8« ¥
substituting the right-hand side of the third equation into the right-hand dt (1) dt
side of the second equation and subsequently substituting into the right- B c
hand side of the first equation. This gives dv av 4 B3C v
—_— = — W XV
dt (1) dt
WP xv = WP xv + B xv + BP xw
- . :, Gy D,
= (B% + 5% + Py x v _d‘jzﬁ"_JrcﬂDXv
dt () dt
which can only be satisfied for every vector ¥ when
Ad{,r D i
B = WP + B 1 %P = = 2 4Dy
dt () dt
7.5.6 Proof of angular velocity negative property
To prove iqua_‘gion (3), use equation (4) (the addition theorem) to write ‘@ = 4558 4 BpA
Since “@* =0 (see below), B8 = %54 which completes the proof of equation (3).
To show “@”* = 0, note that equation (1) (the golden rule for vector differentiation) applied to ‘@ is
40 AT
£X=ﬂ+-"-“‘4x{; = 0= “91%v Th AsA o = s AS AR
BT = XV e only way “@W” x¥V =0 for any vector ¥ is for “@* = 0.

7.5.7 Proof of 2" time-derivative of any vector

The proof of equation (12) follows by differentiating equation (1) in A to give

e,

LY AN
dt \ dt (1)

a
dt
A, /B, e
_ 4dfdv 0 /w" - AzB v
dt \ dt ok X
B, /B
df_dv B dv A= B A-B Bdff
= —| = % Bk = - 5
(18) dt( t) + W x dt + Y X(E"FAW X ¥)
B B
= B + BP xv + BB« (AKIJBX{") + Q%Bxd_:
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