3.1 Position concepts - what objects have a position vector?

Draw $\vec{\mathbf{r}}^{S/O}$, the position vector of an object S from a point O. In general and without ambiguity, S could be a (circle all appropriate objects):

Scalar	Real number	Complex number	Center of a circle
Vector	Point	Reference Frame	Mass center of a set of particles
Matrix	Set of Points	Rigid Body	Mass center of a rigid body
Line	Particle	Flexible Body	Set of flexible bodies
Orthogonal unit basis	Set of Particles	Set of Rigid bodies	System of particles and bodies

3.2 Microphone cable geometry: Lengths, angles, and surface area/normal.

A microphone Q is attached to three pegs A, B, and C by three cables. 1 2 3

Peg and microphone locations from point N_o are known

Quantity	Symbol	Value
Distance from A to B	AB	20 m
Distance from B to C	BC	15 m
Distance from $N_{\rm o}$ to B	h	8 m
$\widehat{\mathbf{n}}_{\mathrm{x}}$ measure of $\vec{\mathbf{r}}^{Q/N_{\mathrm{o}}}$	x	7 m
$\widehat{\mathbf{n}}_{\mathrm{y}}$ measure of $\vec{\mathbf{r}}^{Q/N_{\mathrm{o}}}$	y	5 m
$\widehat{\mathbf{n}}_{\mathrm{z}}$ measure of $\vec{\mathbf{r}}^{Q/N_{\mathrm{o}}}$	z	8 m

$$\vec{\mathbf{r}}^{\,Q/N_{\mathrm{o}}} = x \, \hat{\mathbf{n}}_{\mathrm{x}} + y \, \hat{\mathbf{n}}_{\mathrm{y}} + z \, \hat{\mathbf{n}}_{\mathrm{z}}$$

Calculate the following values (2⁺ significant digits)

Quantity	Symbol	Value
Length of cable joining A and Q	L_A	14.2 m
Length of cable joining B and Q	L_B	m
Length of cable joining C and Q	L_C	m
Angle ϕ between line \overline{BQ} and line \overline{BC}	φ	50.7 °
Mass of thin cloth (density 0.1 kg/m²) whose surface area covers ΔBCQ	m	6.41 kg
Unit vector perpendicular to ΔBCQ	û	$0.936 \widehat{\mathbf{n}}_{\mathrm{y}} + \widehat{\mathbf{n}}_{\mathrm{z}}$

Note: $\triangle BCQ$ is the triangle formed by points B, C, and Q.

¹Section 3.4 shows how to determine the area of the triangle formed by points A, B, and Q.

²Section 3.4 shows how to determine a unit vector perpendicular to the triangle formed by points A, B, and Q.

³Section 3.3 shows how to determine the angle between line \overline{AQ} and \overline{AB} .

3.3 Ankle angle and anatomical landmarks

The following human lower-leg schematic has the relevant anatomical bony landmarks:

- Point A: Midpoint of the lateral and medial malleoli (near the ankle)
- Point B: Near the metatarsal phalangeal (towards the big toe)
- Point C: Midpoint of lateral and medial femoral condules (near the knee)

Reflective markers are attached to points A, B, and C to capture their positions from a point N_0 (fixed in a motion-capture laboratory N). Motion capture hardware and software record the following marker data in terms of orthogonal unit vectors $\hat{\mathbf{n}}_{x}$, $\hat{\mathbf{n}}_{y}$, $\hat{\mathbf{n}}_{z}$ fixed in N.

$$\begin{split} &\vec{\mathbf{r}}^{A/N_o} = x_A \, \widehat{\mathbf{n}}_{\mathrm{x}} + y_A \, \widehat{\mathbf{n}}_{\mathrm{y}} + z_A \, \widehat{\mathbf{n}}_{\mathrm{z}} \\ &\vec{\mathbf{r}}^{B/N_o} = x_B \, \widehat{\mathbf{n}}_{\mathrm{x}} + y_B \, \widehat{\mathbf{n}}_{\mathrm{y}} + z_B \, \widehat{\mathbf{n}}_{\mathrm{z}} \\ &\vec{\mathbf{r}}^{C/N_o} = x_C \, \widehat{\mathbf{n}}_{\mathrm{x}} + y_C \, \widehat{\mathbf{n}}_{\mathrm{y}} + z_C \, \widehat{\mathbf{n}}_{\mathrm{z}} \end{split}$$

Determine the value of the "ankle angle" θ between the vector from A to B and the vector from A to C for the following special-case of a right triangle.

Note: This result is useful for verifying the more general expression.

$$x_A=0$$
 $y_A=0$ $z_A=0$ $z_B=0$ $z_B=0$ Result: $\theta=$ $z_C=1$ $z_C=0$

Courtesy of Drs. Dan Jacobs & Gabriel Sanchez

Find a general expression for θ in terms of $x_A, y_A, z_A, x_B, y_B, z_B, x_C, y_C, z_C$. Result:

3.4 Microphone cable surface area (non-orthogonal walls).

A microphone Q is attached to three pegs A, B, and C by three cables. Knowing the peg locations, microphone location, express the surface area of the cloth that covers the triangle formed by points B, C, Q in terms of the angle θ between the vertical walls.

348

Quantity	Value
Distance from A to B	20 m
Distance from B to C	15 m
Distance from $N_{\rm o}$ to B	8 m
Q 's measure from $N_{\rm o}$ along \overline{BC}	7 m
Q 's height above $N_{\rm o}$	5 m
Q 's measure from $N_{\rm o}$ along \overline{BA}	8 m

Result: $^{2} + 120^{2} \sin^{2}(\theta)$ Surface area =

3.5 † Distance from a line (2D/3D geometry)

A common geometry problem is to determine how far a point is from a line. The figure to the right shows a line \overline{PQ} passing through points P and Q. The position vectors of P and Q from a point A_0 are written in terms of right-handed, orthogonal, unit vectors $\hat{\mathbf{a}}_{x}$, $\hat{\mathbf{a}}_{y}$, $\hat{\mathbf{a}}_{z}$, as

$$\vec{\mathbf{r}}^{P/A_o} = p_x \, \widehat{\mathbf{a}}_{\mathbf{x}} \qquad \qquad \vec{\mathbf{r}}^{Q/A_o} = q_y \, \widehat{\mathbf{a}}_{\mathbf{y}}$$

A point S is located so that: $\vec{\mathbf{r}}^{S/A_0} = s_x \hat{\mathbf{a}}_x + s_y \hat{\mathbf{a}}_y + s_z \hat{\mathbf{a}}_z$

Denoting C as the point on line \overline{PQ} closest to S, determine the following (in terms of p_x , q_y , s_x , s_y , s_z and symbols in the table below).

Distance between
$$P$$
 and $Q - d^{Q/P} = \sqrt{p_x^2 + q_y^2}$

Distance between P and C $d^{P/C} = \frac{1}{d^{Q/P}}$

Using $p_x = q_y = s_x = 1 \text{ m}$, $s_y = s_z = 0.5 \text{ m}$, calculate the distance between S and C.

$$d^{S/C} = \boxed{0.6123724} \text{ m}$$

3.6 Distance from a plane (2D geometry)

A common geometry problem is to determine how far a point is from a plane. For example, the following figure shows an $\hat{\mathbf{a}}_z$ side-view of a rectangular skylight window with side-view corners at points P and Q, whose position vectors from A_0 (a point inside the window/building) are written in terms of right-handed, orthogonal, unit vectors $\hat{\mathbf{a}}_{x}$, $\hat{\mathbf{a}}_{v}$, $\hat{\mathbf{a}}_{z}$, as

$$\vec{\mathbf{r}}^{\,P/A_{\rm o}} \,=\, 1\; \mathrm{m} \;\, \widehat{\mathbf{a}}_{\scriptscriptstyle \mathrm{X}} \qquad \qquad \vec{\mathbf{r}}^{\,Q/A_{\rm o}} \,=\, 1\; \mathrm{m} \;\, \widehat{\mathbf{a}}_{\scriptscriptstyle \mathrm{y}}$$

A street-lamp (not shown) is planned to be built near the window with a point S (the point of the street-lamp nearest the window) to be located at

$$\vec{\mathbf{r}}^{\,S/A_{\mathrm{o}}} \; = \; 1 \; \mathrm{m} \, \widehat{\mathbf{a}}_{\mathrm{x}} \; + \; 0.5 \; \mathrm{m} \, \widehat{\mathbf{a}}_{\mathrm{y}}$$

Calculate (or guess) a vector $\vec{\mathbf{n}}$ outward-normal to the skylight window.

Result: (n is perpendicular to the window and points outside.)

$$\vec{n} = \underline{\hspace{0.5cm}} \widehat{a}_x + 1 \widehat{a}_y \qquad (\vec{n} \text{ is } \underline{\text{not}} \text{ a unit vector since } |\vec{n}| = \sqrt{2})$$

Determine d, how far S is outside the infinite plane containing the rectangular skylight window. **Result:** (A positive value of d means S is outside the building whereas a negative d means S is inside.)

$$d =$$
 meters

† Leaving all data unchanged except to modifying the angle between $\hat{\mathbf{a}}_x$ and $\hat{\mathbf{a}}_y$ to 60°, cleverly redo this problem only using the now non-orthogonal, basis, \hat{a}_x , \hat{a}_y , \hat{a}_z .

349

$$\vec{\mathbf{n}} \, = \, \widehat{\mathbf{a}}_z \, \times \, \big(\qquad \widehat{\mathbf{a}}_x - 1 \, \widehat{\mathbf{a}}_y \big)$$

$$\left| \vec{\mathbf{n}} \right| = 1$$

$$d = \frac{\vec{\mathbf{n}}}{|\vec{\mathbf{n}}|}$$

$$\vec{\mathbf{n}} = \hat{\mathbf{a}}_{\mathbf{z}} \times (\hat{\mathbf{a}}_{\mathbf{x}} - 1 \hat{\mathbf{a}}_{\mathbf{y}})$$
 $|\vec{\mathbf{n}}| = 1$ $d = \frac{\vec{\mathbf{n}}}{|\vec{\mathbf{n}}|} \cdot = 0.5 \sin(60)^{\circ} \approx 0.43 \text{ meters}$

≬â_v

The problem statement can be generalized using symbols p_x , q_y , s_x , s_y where

$$\vec{\mathbf{r}}^{P/A_o} = p_x \, \hat{\mathbf{a}}_x$$

$$\vec{\mathbf{r}}^{Q/A_o} = q_u \, \hat{\mathbf{a}}_v$$

$$\vec{\mathbf{r}}^{P/A_o} = p_x \, \hat{\mathbf{a}}_{\mathbf{x}}$$
 $\vec{\mathbf{r}}^{Q/A_o} = q_y \, \hat{\mathbf{a}}_{\mathbf{y}}$ $\vec{\mathbf{r}}^{S/A_o} = s_x \, \hat{\mathbf{a}}_{\mathbf{x}} + s_y \, \hat{\mathbf{a}}_{\mathbf{y}}$

Side-view

Calculate a unit vector $\hat{\mathbf{n}}$ outward-normal to the skylight window. Express d, how far S is outside the infinite plane containing the rectangular skylight window, in terms of p_x , q_y , s_x , s_y .

Result: (\hat{n} is perpendicular to the window and points outside and d is positive if S is outside the building).

$$\hat{\mathbf{n}} = -----\hat{\mathbf{a}}_{\mathbf{x}} + -----\hat{\mathbf{a}}_{\mathbf{y}} \qquad d = ------$$

3.7 † Distance from a building: It's "just" geometry (3D) - Courtesy Adam Leeper

A common geometry problem (arising in computer graphics, construction, biomechanics, engineering, etc.) is to determine how far a point is from a plane. For example, the following figure shows points P, Qand R located at corners of a triangular skylight window with position vectors from A_0 (a point inside the window/building) expressed in terms of right-handed, orthogonal, unit vectors $\hat{\mathbf{a}}_{x}$, $\hat{\mathbf{a}}_{y}$, $\hat{\mathbf{a}}_{z}$, as

$$\vec{\mathbf{r}}^{P/A_o} = 1 \text{ m } \widehat{\mathbf{a}}_x$$
 $\vec{\mathbf{r}}^{Q/A_o} = 1 \text{ m } \widehat{\mathbf{a}}_y$ $\vec{\mathbf{r}}^{R/A_o} = 1 \text{ m } \widehat{\mathbf{a}}_z$

A street-lamp (not shown) is planned to be built near the window with a point S (the point of the street-lamp nearest the window) to be located at

$$\vec{\bf r}^{\,S/A_{\rm o}} \; = \; 0.5 \; {\rm m} \; \widehat{\bf a}_{\rm x} \; + \; 0.5 \; {\rm m} \; \widehat{\bf a}_{\rm y} \; + \; 0.25 \; {\rm m} \; \widehat{\bf a}_{\rm z}$$

Calculate a vector $\vec{\mathbf{n}}$ outward-normal to the skylight window.

Result: $(\vec{n} \text{ is } \underline{not} \text{ a unit vector})$

$$\vec{n} \, = \, \underline{\hspace{1cm}} \, \widehat{a}_x \, \, + \, \underline{\hspace{1cm}} \, \widehat{a}_y \, \, + \, 1 \, \widehat{a}_z$$

Determine the measure d of how far S is outside the infinite plane containing the triangular skylight window (in meters).

Result: (A positive value of d means S is outside the building whereas a negative d means S is inside.)

$$d = \approx 0.144$$
 meters

3.8 Proof of the law of cosines with vectors.

Vectors are very useful for geometry. Use vectors and vector operations to prove the law of cosines for a triangle with sides of length a, b, and c and an angle θ opposite the side of length c.^a

$$c^2 = a^2 + b^2 - 2 a b \cos(\theta)$$

^aStart by introducing vectors $\vec{\mathbf{a}}$ and $\vec{\mathbf{b}}$ so that θ is the angle between $\vec{\mathbf{a}}$ and $\vec{\mathbf{b}}$.

350