Homework 4. Chapter 5
Vector bases and rotation matrices I

Ellipse: a=2 and b=4 | Circle: a =2 and b=2

Result: fi=10b, + 0433b, | @ = 0.5b, + 0.866by
T = -0433b, + 1.0b, | T =-0866bx + 0.5by

4.1 Circles, 7, degrees, radians, arc-length. (Section 1.4).

e Draw a circle with radius r and calculate its circumference in terms of .
e Using the circle, define the irrational number 7. Approximate 7 in radians and degrees.

5 Q/Bo
When a = b (the ellipse is a circle), n is always parallel to 7/ True/False
o * Draw a 45° circular arc with radius r and calculate its arc-length s in terms of 7.

=/Q/Bo
When a # b (the ellipse is not a circle), 1 is always para allel to T True/False

2 ’ Draw a circle of radius r Draw a 45° circular arc
T £ S~ = ’ — I‘ > — 1 — 0_ :- ---------------- :- -----------------
(h) Optional**: Show how the definition of an ellipse results in F'(x,y) ) + %2— ; & I
3.14 Optional**: Normal to a sphere -
A sphere can be defined as the locus of points that are a distance r (called the sphere’s radius) from O
a point B, (called the sphere’s center). For example, the figure to the right shows a sphere of radius [ — T
g s centered : Circumference = [
r that is centered at point B,. .

The position of a point @ on the sphere’s periphery from point B, can

Provide an explanation as to why there are 360° in a circle.
be expressed in terms of the scalars x and y as

Explain:

?Q/’Bo — .’.EB}{ + ygy -+ sz 5 i . . .
4.2 SohCahToa: Sine, cosine, tangent as ratios of sides of a right triangle. (Section 1.5).
where Bx: Sy, b, are right-handed, orthogonal, unit vectors.
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labeled as 6. Write definitions for sine, cosine, and tangent in terms of:
e hypotenuse — the triangle’s longest side (opposite the 90° angle).
e opposite — the side opposite to ¢

Result: F(z,y,2) = 22 + 12 + 2 -2 =

When a scalar function F describes the boundary of an object, the spatial gradient VF is normal to e adjacent - the side adjacent to sin(f) =
the boundary. With ¥%/P> = —aby + ¥ bv + "'b VF can be expressed as L B
B OF = OFs | OFg
= —by + =D b,
i (6.12) Oz ay 9z ‘% cos(0) = A mnemonic for
= - : : S_—_ . 8 these definitions is
Use VF to calculate an outward normal vector fi at point @ in te,1\m&. of z, y, r, ete. é " “SohCahToa".
. i ™ i b A ~ sin(#)
Result: 0 = by + b <+ y ) tan(g) 2 _ @
: cos
3.15 Optional**: Normal to an ellipsoid ad] acent

( i a poi a ellipsoid of semi-diameters a, b, and c.
The following figure shows a point @ on a ellipsoid of semi-diam . b,

4.3 Pythagorean theorem and law of cosines - memorize. (Section 1.5.1).

1
! 1
— -~ i . - . - ) 1 ;
Right-handed, orthogonal, unit vectors by, by, B % &1 Draw a right-triangle with a hypotenuse of length ¢ and other sides of ' '
rected with b pointing right along the ellipsoid’s major 2 length a and b. Relate ¢ to @ and b with the Pythagorean theorem. : :
axis and by pointing up along the ellipsoid’s minor axis. : Result: F : :
! 1

The position of Q from B, (the ellipsoid’s center) can be

e " s scalars ., y, and z as : : , o ;
expressed in terms of the sca Y A non-right-triangle has angles «, 3, ¢ opposite sides a, b, ¢, respectively.

$Q/Bo _ . ’Bx 4 ygy 1+ zb, Use the law of cosines to complete each formula below.

Result: 3 2 5
Calculate z, y, z when z =%, 2=§, a=3, and b=c=2. ¢ =a" + b — 2abcos(¢)
Result: =15 y= 2\/5 ~ 1.414214 s = 1 -
Determine an outward normal vector fi at point @ in terms of z, y, 2, a, b, c. 2

a

The Pythagorean theorem is a special case of the law of cosines. True/False. (circle one).

; ; Lo . e ¢ o 9
Calculate the unit vector in the 1 direction when z =35, z=35, a 3, and c¢

General case Unit vector with numerical values

Result: = B+ b, + b, | 0.359b, + 0.762by + 0.539b,
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4.4 Memorizing sine and cosine of common right-triangles.

Complete/memorize the following table. Label the coordinates of each point on the unit circle.
(0,1)

sin(0°) = cos(0°) =

)
sin(30°) = cos(30°) = )
sin(45°) = cos(45°) = «
sin(60°) = cos(60°) =
sin(90°) = cos(90°) =

4.5 Graphing sine and cosine - (the now-obvious invention from “yesterday”) (Section 1.5.2).

Graph sine and cosine as functions of the angle 6 in radians over the range 0 < 6 < 2.

3 was first to regard sine and cosine as functions (not just ratios of sides of a triangle) circa 1730.

Result: sin() vs. 6 cos(f) vs. 0

W—- 14 o

0.5J — 0.54—

0 - — — : ' —p 0 f ! : ! ; I —_—

w4 w2 Jy4 o Smid 32 Tw4 2n O w4 w2 3wd w  Sn4 3w2 Tad 2m @

—0.5'1‘—‘ -0.54+—

-14— ° -14—

4.6 Ranges for arguments and return values for inverse trigonometric functions.

‘o " Determine all real return values and argument values for the following real trigonometric and inverse-
trigonometric functions in computer languages such as Java, C, MotionGenesis, and MATLAB®.

Possible return values Function Possible argument values Note
<z< z = gos(x) <zx<
<EE %= Wi L B
|<z<[X_] =z = tan(z) [ << 1 z# & 5 3.
< gL z = acos(z) Lz <
Lxnx z = asin(x) <z <
[-7/2]<z<| n/2 | z= atan(z) [ o <ol o1
<8< % = akand{iy, g <y< atan2(0, 0) is undefined
<z <

4.7 What is an angle? (Section 5.6).

Draw the “geometry equipment” listed in the first column of the following table.
Complete the second column with appropriate ranges for the angle € (in degrees).

Draw the “geometry equipment” Appropriate range for ¢
Two lines 0° < g <

Vector and line <0 <

Two vectors < 6 <

Two vectors and a sense of positive rotation <0 <

Two vectors, a sense of positive rotation, and time-history < 0 <
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4.8 Calculating dot-products, cross-products, and angles between vectors. (Section 5.4.3).

The following aﬁb rotation table relates two sets of right-handed, orthogonal, unit vectors, namely
ayx, ay, a, and by, by, b,. Perform the calculations below to 27 significant digits.

| B B, b, o B,
A, | 0.9623 -0.0842 0.2588 / Hrsm :
&, | 01701 09284 -0.3304 it oo Wb
a, | 0.2125 03619 0.9077

(a) Efficiently determine the following dot-products.

ax " ax = ﬁy . 53 == 67 . By =
A, - by = a, - by — b, - 4, =
(b) Determine the angles between the following vectors.
£(ay,8,) = ‘ £(b,,b,) = °
LBy ) = : Z by, ) = ’

(¢) Express the unit vector u in the direction of 3a, + 4 B, as shown below.
Result: R N
u = a, + b,

(d) Perform the following calculations involving v = 2a, and Vo =3a, + by.

Result: L L o
Vs Vy = é(\q vz) —
Vi X Vo = by + by = a, + a,

(e) Express Vv =2a, + by in terms of ay, ay, a,.
Result:

vV = a, + a, + a,

4.9 Efficient calculation of the inverse of a rotation matrix. (Section 5.4.2).

The following rotation matrix R relates two right-handed, orthogonal, unitary bases.
Calculate its inverse by-hand (no calculator) in less than 30 seconds.

0.3830 -0.6634 0.6428
R = 0.9237 0.2795 -0.2620 = R =
-0.0058  0.6941  0.7198
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4.10 SohCahToa: Rotation tables for a landing gear system. (Section 5.5). 4.11 SohCahToa: Rotation table for a landing gear system - with disorderly unit vectors.

The figures below show three versions of the same landing gear system with a strut A that has a
simple rotation relative to a fuselage N. In each figure, ny, Ny, 10, is a set of orthogonal unit vectors
fixed in N and ay, ay, &, is a set of orthogonal unit vectors fixed in A. However, these unit vectors
have a different orientation in each figure. Redraw the vectors ny 11, and ay, ay, a, so it is easy to
see sines and cosines. Then, determine the *R" rotation table for each figure.!

The following figure shows a landing gear system with a strut A that has a simple rotation relative
to a fuselage N. Right-handed sets of orthogonal unit vectors ay, &y, @, and fy, Oy, 0, are fixed in
A and N, respectively. @ is the angle from 1, to @, with +n, sense.

Redraw a,, a,, a, in a geometrically suggestive way for
[acudraw y dy, dg S 5 ;
forming the ®R™ rotation matrix with sine and cosine.

fiy e
- | I
1 |
; o o s 1 |
aRpn n, ny n, 1 ~
5 I 7z |
ay 1 0 0 : :
a, 0 cos(f) sin(0) : :
. | n |
a, 0 -sin(f)  cos(0) I Y I
Note: When § =0, a. # ny and a, # n, and a, # n,. Limim o ettt et =
Thus, ax, ay, a, are “disordered” with ny, fiy, 0.
Complete the blanks in the equations relating a,, a,, a, to n,, n,, N, and in the *R" rotation table.
N N N N ER" i ny n,
a, = n, + n, + 1, -
— e _ ay
By = n, + n, + n, A~
: : - ay
3 o~ —~ —~ az = ﬁx + ﬁy + ﬁz af
apn Ny i, 1, .
ay . :
4.12 Rotation table concepts: What is an angle
a ) . ) N o
¥ Given: Two sets of right-handed, orthogonal, unitary bases a, ay, 8, and by, by, b
a, Question: Determine a numerical expression for each element of the 3 x 3 rotation table PR* below
so b, =a, and the angle between by and a, is 30°.
Draw by, by, b, clearly show the relative orientation of the two bases.
Question: Are there other orientations of by, by, b, and &y, a,, d, such that b, =&, and the
angle between by and ay is 30°7 Yes/No.
Question: Is PR®* unique when b, = a, and by - 8, = @ 7 Yes/No.
If your answer is No, draw an alternative orientation for by, by, b,. .
: If "'no", alternative
aRn n, n, 1, i !
1
bpa o 2 b 1
a, 'R a, ay a, : !
s by " :
ay o 1 !
£ 1
5 by : ,
Z 1 1
b, e e e e e e o a
'Each figure has two missing vectors (e.g., iy and @y are missing from the first figure). Use the fact that each set of vectors
is right-handed to add the missing vectors to each figure.
3 X i _ g Iy = . . ti .
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4.13 Rotation matrices for a crane and wrecking ball. (Section 5.5).
The figure to the right shows a crane whose cab
A supports a boom B that swings a wrecking ball
C. There are three sets of mutually perpendicu-
lju' 1;i\ght;handed unit vectors, namely Ny, Ny, Ny; -
by, by, b,; and €, ¢, ¢,. The point of this prob- T

lem is to relate these sets of unit vectors. ®
Note: To relate the Bx, By, b, and Ny, Ny, O, unit vectors,

o -\7‘*—‘ X
it is helpful to redraw these vectors in a geometrically sug- {4\
gestive way as shown below. i, /

(a) Use the definitions of sine and cosine to express each of by, by, b, in terms of ny, 0y, 10,.

Result: Ry
b, = cos(fp)ny + sin(fp)ny
b, =
b, -
o _ _ . b Ny n, n,
Fill in the second and third rows of the "R"™ ro- p
_ : . b, | cos(fg)  sin(fg) 0
(b) tation table shown to the right by extracting
the various coefficients of the ny, ny, n, unit Bv
vectors in the previous results. o
b,
(c) Form PR™ the rotation matriz relating Ex, 6} b, to ny, Ny, 0,. Then form its transpose.
Result:
b, fi, fi, b,
Ey’ = n, n, |= by
b, f, i, b,

(d) To relate the ¢, €y, €, and 1, Ny, N, unit vectors, redraw these vectors in a geometrically
suggestive way and then use the definitions of sine and cosine to express each of €y, €y, €, in
terms of ny, Ny, n,. Use these expressions to form the “R" rotation table.

Resitlts oo o sumwe

1 1

' ! o~ o~ —~
1 o cpn

: 1 Cio= R | Il l'ly n,
1 o~

: - C.

' : Cyi= &

1 I C)!

1 : E = B

1 : 4 CZ

' '

(e) Use matrix multiplication to form the PRC rotation table, i.e., PR® = PR™ % "RC,
Simplify the results with the following trigonometric identities.

sin(fp + 0c) = sin(fp) cos(fc) + sin(fc) cos(0p) cos(-0c) = cos(fc)
cos(fB + 0c) = cos(fp) cos(fc) — sin(fp) sin(fc) sin(-0¢) = -sin(fc)
Result: bRe & g =

by

by

b,
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4.14 Varying cable lengths to position a construction hoist.

A uniform beam B is attached to a ceiling N by two variable-length cables (A and C).
Cable A attaches to the ceiling at point N, of N and to the beam at point B, of B.
Cable C attaches to the ceiling at point Ne of N and to the beam at point B¢ of B.

Right-handed orthogonal unit vectors Ny, Ny, 0, and ’Bx, Ey, BZ are fixed in NV and B, respectively,
with b, = 11, perpendicular to the vertical plane containing points Ny, B,, Be, and N, and:

e N, horizontally-right from N, to N¢ S L >|
i

e n, vertically-downward
° Bx directed from B, to Be

Complete the PR" rotation table.

bpn N ny n,

by

by

b,
Description Symbol Type
Distance between N, and N Ly Constant
Distance between B, and B¢ L Constant
n, measure of B,’s position vector from N, i Variable
n, measure of B,’s position vector from N, Y Variable
Angle from n, to b, with +h, sense 7 Variable
Length of cable A (distance between N, and B,) L4 Variable
Length of cable C' (distance between Ng and Be) Le Variable

Although planar geometry and the Pythagorean theorem can be used to calculate the cables’ lengths,
these techniques are less effective than vector methods and rotation matrices for more complicated
geometry. To understand how to use vector methods and rotation matrices, proceed as follows.

a) Using only the picture,? complete the following blanks in terms of =, y, L, Ly.
g Yy P

Result: gBo/No _ T, n,

B,’s position vector from N,

B’s position vector from N¢ gBo/Ne — n, + n, + by

(b) An effective way to calculate each cable’s length is with dot-products. Use the following

distance formulas (and the rotation matrix) to efficiently relate L% and L% toz,y,8, Ly, Lp.
Result:

?BO/NO = FB(J/ATC) —

fBc/Ne , gBe/No — _

(¢) Implicitly differentiate the previous equations to efficiently relate Ly and L¢ to &, 7, 0.

Result:
2LaLla = 2z + y9)
2Lc Lo =

(d) Optional™: Using Ly=6m and Lp=4m, caleculate La, Lo, La, Lp when z=1m,
y=2.5m, #=15° and =0, y=25 6=0.2 2d

57 sec ’

2Hint: To form ¥ 2¢/¥¢  use your finger to trace various paths to Be from Ne.
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Result: L4 =2.69m Ley=31m L= 18 Sle% Loy % 4.17 Vertical displacement of a bifilar pendulum (useful for calculating moment of inertia).
Bifilar and trifilar pendulum are used to determine inertia properties of rigid bodies such as aircraft,
spacecraft, and biological structures such as mass properties of humans. The following figure shows a
rigid human bone B suspended by two rigid inextensible cables A; and Aj, each of which is attached

to a flat horizontal ceiling V.

4.15 Rotation matrices and angles. (Section 5.5).

—~ —~

Three sets of right-handed orthogonal, unitary bases a, ay, a,, by, by, b,, and ¢, ¢y, €, and
the *R° and PR® rotation matrices are given below.

afe & % 2 be | = E s e Cable A; attaches to the ceiling at point N; of N and to the bone at point B; of B.
o - S E = = . L .CZ e Cable A, attaches to the ceiling at point No of N and to the bone at point By of B.
g 0.5 0.866 0 Ex cos(z) cos(y) sin(z) cos(y) -sin(y) e Point N, of N is centered between Ny and Ns.
a, | -0.866 0.5 0 by -sin(z) cos(x) 0 e Point B, of B is centered between B; and Bs.
a, 0 0 ik gz sin(y) cos(z) sin(z) sin(y) cos(y) ° Poln.lt Baw (Bs Cel.lter of mass) and point B, always lic directly below N,.

o Initially, B; lies directly below N; (i=1, 2), respectively.

e B is rotated by an angle 6 about the vertical line through B, and N,.

Form an expression for the angle between a, and the vector by + ¢y in terms of z and y.

Relate y to L, h, and 0 (defined in the following table).
Result: \

Result: 2+ %L'z [1—cos(8)] — h2 =0

é(ﬁxa Ex +Ex) -

Calculate numerical values for y and 7 (3 significant digits).

4.16 Configuration constraints for a four-bar linkage Description Symbol Value

Shown to the right is a planar four-bar linkage Distance between N, and IV, L -

consisting of uniform rigid links A, B, and C and Distance between N; and B; (=1, 2) * 1w

ground N. Link A is connected with revolute joints Ligatation augle in & B 145

to N and B at points Ny and Ap, respectively. B's rotation rate in N ¢ 0.5 &5

Link C is connected with revolute joints to N and Distance between N, and B, Yy 0.383 m

B at points Cy and B, respectively. Time-derivative of y W -0.231 %’:

Right-handed orthogonal unit vectors aj, Bi, G,
and 1; (i = x,y,2) are fixed in A, B, C, and N, with
ay directed from N4 to Ag, by from Ag to Bg,

4.18 3D visual thinking (draw/think 3D) - for disordered unit vectors
The figure to the right shows a right-handed orthogonal basis axy,

¢y from Cy to Bg, ny vertically downward, fy ety Symbol Vol consisting Ef unit vectors ay, ay, as ind imo@er right-handed orthog- R
from N4 to Cy, and a, =b, =¢,=n, parallel Distance from N, to Ap : I T onal basis byy, having unit vectors by, by, b,. ax
to the axes of the revelute joints. Distance from Ap to Be Lg 2m The bases are initially oriented with # =0 and by = -Ay, By = 48y,
Create a vector “loop egquation” using a sum of D%Stance from Be to Cy Lo 2m b, =4, Basis byy, is then subjected to a right-handed rotation rel- R
position vectors that start and end at point N 4. Distance from Cly to N Ly 1 m ative to Axy, in one of two ways, as described below. ay
Result: Angle from 1y to ay 4a Variable Express each PR?* rotation matrix below in terms of 6.
Lad, + + 1 =B il_lgie i:rom f]-x to Etx i Var%able _
. I = = ‘e 100 B 10 & o Vegialle Rotation of byy, in ayy, characterized by +0 a, Rotation of byy, in axy, characterized by +6ay
Dot tht33100p equation V\-’lth n, and ny to create two equations f; =0 (i =xy) that relate g4, ¢, (@ is the angle from -a, to b, with +a, sense) (6 is the angle from @, to b, with +a, sense)
and go.” Next, Determine values of gp and g that satisfy these two equations when g4 = 30°.
Result: Equations relating ga, ¢s, gc. Values when g, = 30° o e ay a, bRe ax ay a,
fi = Laxcos(qga) + Lpxcos(gp) — Le *cos(ge) gp = T4.4775° N b
. X
= §2 — Lo *sin(ge) — Lw go = 45.5225° " -
If Lo <1m, link A can be driven completely around, whereas if La > 1 m, it can only be driven 90°. by by
b, b,
*Dot-products can be calculated by definition (inspection of the figure) or with rotation matrices.
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Homework 5. Chapters 1, 6.
Vector functions and vector differentiation

5.1 Notations for derivatives. (Section 1.6.1).

Date Person Symbols for 1%, 27¢ and 3"¢ derivatives
dy &y &y
" 1 o Y -
1675 dt dt? dt’
1675 7 i Y
1770 (trained by Euler) Y y" "
1850  Cauchy/Weierstrauss }lim) et 5 =) ? ?
1 — |
o, 2 N3
1786 Legendre (introduced partials then abandoned) %% g—% g—ﬁ
1841 Jacobi (re-introduced partials again) v - v

There was bitter rivalry between Newton and Leibniz, and the notations of Leibniz and Newton are not entangled.

= dy . ; . iy oy ;
For example, E% is written in Leibniz’s notation as or Newton’s as

5.2 Leibniz’s shorthand notation for 3"¢ derivatives
Write the explicit expression for the following 37 derivative (so it only contains 1° derivatives).

Result: &3y A
dt?
5.3 Geometric interpretation of a derivative. (section 1.6.1). .
il
Estimate the 13-derivative of the function 3t p
y(t) shown to the right at ¢t =0, 2, 4, 6. ,ff
25 +
Pick your answers from: -1, 0, 1, 2. = /
Result: dy _ dy - 2
df =0 o (]f t=2 -
1.5
dy|  _ dy|  _
dt t=4 - dt t—6 - I i | | ] | |
0 1 2 3 4 5 6
t (time)

Estimate the sign of the 2"%-derivative of y(t) from the answers —, 0, or +.
Answer 0 when the absolute value of the 2"%-derivative is estimated to be less than 0.5.

Result: 2, 2, 12, a2
d—% is di’: is ”34 is d—l‘z’ is
at” |, dt” |,y dt” |,y dt”|,_g

5.4 Derivatives of commonly-encountered functions. (Section 1.6.5).
Differentiate the following functions that depend on ¢ (time). Ensure answers involving z are valid
when x is either constant or depends on time, e.g., when x = .

Result:
d 2 _ d .3 _ d a1 _
&t = at = Fge =
% sin(t) = % cos(t) = é‘% cos(z) =
% & = Elc% In(t) = g? In{z) =
5.5 Good product rule for differentiation. (Section 1.6.7).
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5.9 Review of explicit and implicit differentiation. (Section 1.6.10).
The figure to the right shows a point @ on a cylindrical helix.
Two geometrically significant quantities are a distance A and /1

The good product rule for differentiation that works when u and v are scalars, vectors, or

matrices is (circle the correct answer):

dlu*v)  du dv d(u *v) dv du d(u*v) an angle ¢ that are related to two constants R and 3 by

U dv
@ @ttt g T TR T & et a

'
Sl
T

A Be

. 36 Rosese
M= R? 4 (ﬁg)Q tan(qﬁ) . B Z ’ g
Ao D

Determine A and q5 (the time-derivatives of A and ¢) in terms of % 2
0,0, R, 3, etc., using the two methods described below. '

o

5.6 Differentiating quotients: Use the product rule and exponents. (Division - “Just say No”).

Although the “quotient rule” can be used to calculate the derivative with respect to ¢ of the ratio

of two functions m it can be casier to rewrite the ratio as f(t) * g(t)"! then use the product

g(t)
rule. Use this idea to first rewrite the following ratio of two functions as a product and then use

the product rule to calculate its derivative. G 5 -
' (a) Explicit differentiation

Result: . 2 , : : ‘ .
In(t) d 2 Solve explicitly for A and ¢ and then differentiate the resulting expression.
5 = — [In(t) /7] = .
t dt Result: , 30
A= +/R? + (B6)? ¢ = atan( )
5.7 Example of the “good product rule” for differentiation. (Should take less than 2 minutes). i ;
= o =

The “good” product rule is easy-to-use for very quickly differentiating complex expressions.
Knowing = and y are variables that depend on the independent variable ¢ (time), determine the

ordinary time-derivative of the function f when' (b) Implicit differentiation

Differentiate the equations involving A? and tan(¢) and then solve for A and é.

f(t) = sin(t) % cos(z +y) * (&) * € * In(y) / Result: : . B8R 4

¢ = = BR§
Result: df .
E = cos(t) * cos(z +y) * (£)2 * e * In(y) /=

— sin(t) * sin(z+y) * (Z+9) * (@)

(c) Explicit/Implicit differentiation of A is easier and computationally more efficient.

N 7,
e

2
5.10 Review of partial and ordinary differentiation. (Section 1.6.2).

The kinetic energy K of the system to the right can be written in terms
of constants m?, m%, L and time-dependent variables x, 6, as

x e« In(y) /z

1 : 1 : :
B = 5 mAi? + B m@ [&? + L2 % + 2 L cos(0) i 6]

+ + +

Use partial and ordinary differentiation to form the following
ingredients for Lagrange’s equations of motion.

K OK d oK

a0 00 dt 90

5.8 Differentiation concepts. (Section 1.6.10).
The following equation relates the dependent variable y to the independent variable t.
4 2 :
y- — 8y = 3t° + sin(t)
5.11 Differentiation concepts: What is dt? (Section 1.6.3).

Find a general expression for the ordinary derivative —G—% in terms of ¢ and y. A continuous function z(t) depends on z(t), y(t), and time ¢ as z = x + ¥ sin(t)

Iind a numerical value for C% at t =0 when y is positive. At a certain instant of time, y =1 and z simplifies to z = ¢ + sin(f)
Hint: The value of y is not arbitrary. If you encounter difficulty, consider implicit differentiation.. Find the time-derivative of z at the instant when y =1
Result:
dy dy B Result: s B
dt 8t | dijy—1
!Symbols for the 1°¢ and 2"¢ ordinary time-derivatives of z include C% and ‘%35: (introduced by Leibniz), # and & (introduced
by Newton), and x’ and =’ (introduced by Lagrange and used by MotionGenesis).
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(5.12

5.13

5.14

Differentiation concepts. (Section 1.6.3).
The scalar v measures a baseball’s upward-velocity. Knowing v = 0 when the ball reaches maximum
height near Earth (g ~ 9.8 ), decide if the following statement about v’s time derivative is true.

dv d(0) \%

= = =5 0 True/False

Explain:

Integrals of commonly-encountered functions. (Section 1.7).

Calculate the following indefinite integrals in terms of an indefinite constant C' (regard t as positive).
Result:

TH2dE = ftdt = fEtdh =

Ji#dt = Ft =it = Jitdi =

[ sin(t) dt = [ cos(t) dt = fetdt =

[5dt = [5/tdt = JG+1)dt =
Optional*: 1 Continuous numerical solution of a nonlinear ODE. o(t) vs. t

35

3

Plot the continuous solution z(¢) to the following ordinary differen- .
tial equation for 0 < ¢ < 10 with data every 0.2 sec. Use an initial
value z(0) = 0 and use the initial value of % that is closest to 1. 15

sin(z) + 42° — 1.9 cos(27z) — 2 = 0 &

Hint: A “clever” way to solve this nonlinear ODE for z(t) is

Use the given equation and initial value z(0) = 0 to solve for & at t=0.

For example, the technique in Section 1.10 finds #(£=0) = 0.8841161 when z(t=0)=10.
Time-differentiate the 1%*-order ODE that is nonlinear in # to form a 2"%-order ODE that is linear in .
Then, solve the 2"%-order ODE for .

~3.87wsin(2w )L

0s(@) & 2% + 3.8wsin(2wa)z = = T =
cos(%)% + 8% + 3.8wsin(27wx)E 0 z %) . BE

Numerically integrate the 2”%-order ODE with the initial values of z:(0) and (0)
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5.15

5.16

5.17

Vector differentiation and Cartesian coordinates. (Section 6.8)
The figure to the right shows a baseball P moving in a
reference frame N. Right-handed orthogonal unit vectors
Ny, Ny, 1, are fixed in N as shown. P’s location from point N,
(a point fixed in N) can be specified with three coordinates.

n‘
A Cartesian coordinate system locates I” with the coor- : 1
dinates x, 1, z, which are the n,, n,, n, measuresof P's ~ £~ ____  ___
s Ys %y s Ly i, y iy ..,l
position vector from N,. “B<r<oo “o<y<oo —00<z<o0

(a) Report the time-derivative in N of ny and briefly justify your answer.

Result:
N n,’s magnitude
dn & &
dt n,’'s direction

(b) Express P’s position vector from N, in terms of x, y, z, Ny, Ny, N,
Using the definition of the derivative of a vector [equation (6.3)] and the product rule for vector
derivatives, find the time-derivative in N of p and express it in terms of &, ¢, Z, and Ny, Dy, .
Result:

N__,
dp . s i

p = + yoy + zn; o = &hx + oy + 1,

Vector differentiation and reference frames. (Section 6.3).
The following vectors are expressed in terms of the orthogonal unit vectors ay, ay, a, and ¢ time.
Circle the vectors that can be differentiated without consideration of a reference frame.

0 28, + 48, 28, + tay

Ay 28, + 48, + 63, 28, + ta, + sin(t)a,
Textbook definitions of vector differentiation.
A vector has magnitude and direction. The change of a vector’s magnitude relates to scalar differ-
entiation. The change of a vector’s direction depends on reference frame. The first notation that
explicitly showed dependence of a vector derivative on a reference frame was introduced in 1950
by the preeminent dynamicist Thomas Kane who taught that a mathematical definition should:

e Involve ingredients that themselves are reasonably understood and/or defined.
In other words, the definition is comprehensible to the intended audience.
e Be useful for directly or indirectly proving all other related properties.
Report one or more definitions for the derivative of a vector from textbooks (e.g., undergraduate/graduate

physics or engineering textbooks) and/or from the Internet and determine if both the definition and
notation clearly shows that a vector’s derivative depends on reference frame.

2The variables z, y, and z implicitly depend on time ¢.
Leibniz, Newton, and Lagrange introduced the symbols C{% @, and x’, respectively, to denote the time-derivative of x.
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5. 18 Physics and calculus: Graphing F = ma for a sky-diver and rocket-sled.

Complete the missing statements, axes values, and graphs.

A

y

sky-diver
4 seconds after leaving a sta-
tionary helicopter from a height

free-falls  for

200 m above Earth (yis

The only relevant force is Earth’s gravity.

positive-upward).

ol

a, (mfs™)

dz
Q,Jé#:

Use Earth’s gravitational acceleration g ~ 10 3.

The variable x measure’s the sled’s
position along the rails.
Initially, z =0 and @ =0.

A rocket-sled of mass m is thrust along smooth mchned
rails with time-varying force F.

FBD.

Below:
then set Fy,, =ma.
Use symbols m, g, Frr, Fix, 0.

Draw forces

Form F,, and

b

Sash

i+

[
¢

= =

' L L L L é d'U;}- e, moy m
s - A * <2
0 0.5 1.5 2 25 3is 4 dt s s
time (seconds)
ady _
Yu = dt T
=
L
E ) 0 1 2 3 5
~ time (seconds)
>>\ d
L 7 9_ €T m m
- a{ - =) * = *
0 0.5 1.5 2 25 35 4 &
time (seconds) £
y=-5% +
0 1 2 3 5
time (seconds)
Tr =
— 64
60
<
= 48
44
— 40
£ 36
532
Ezs
. 24
L 4 20
16
12
! . i 1 1 3l
0 0.5 1.5 2 2.5 35 4 ar
time (seconds) -4 :
0 1 2 3 5
time (seconds)
Copyright (©) 1992-2014 by Paul Mitiguy 370 Homeworlk 5: Vector differentiation

(e) The location of P is uniquely defined by r, 0, z.

5.19 Cylindrical coordinates, position, and orientation

The following figure shows a baseball P moving in a reference frame N. Right-handed orthogonal
unit vectors ny, iy, 1, are fixed in N as shown.

n
P’s location from point N, (a point fixed in N) can be specified %
with eylindrical coordinates consisting of:
e 7, the distance between N, and the point ) that traces N
. g (8]
out the projection of P onto the plane that passes through
N, and is perpendicular to n,
e 0, the +n, measure of the angle from a, to n. ﬁx/
Note: Orthogonal unit vectors ax, ay, a, are fixed in a reference frame
A with 3, pointing from N, to @, 8, = 1, and a8y = a, X a,.
>0 r<f < 00 B 00

e z, the +1, measure of P’s position vector from N,.

(a) The magnitude of 8, changes/stays constant (circle one) with time.

The direction of @, in N changes/stays constant with time.

(b) To relate the ay, ay, a, and Ny, Ny, 0O, unit vectors, redraw these vectors in a geometrically

suggestive way and then form the R rotation table that relates ay, @y, @, to Iy, Ny, N,
Result: apmn

—~

n, ny n,

(c) By inspection, express P (P’s position vector from N,) in terms of r, #, z, and a,, ay, a, and

then use the rotation table to express p in terms of 7, 8, z, and niy, Ny, N,.

Result: p=ra, + @, B = rsin(@) Ay + i, + 27,
In view of these expressions for P, it is clear that p is a vector function of r/6/z [circle the correct
variable(s)] in A whereas p is a vector function of 7/6/z in N.

(d) Alternately, the Cartesian coordinates x, y, z locate P from N, as P = x 1y +yny + 21,

Express o and y in terms of » and 6. Then, express r and 6 in terms of x and y.
Result: [Note: The atan2 function is described in Section 1.5.4 and is undefined if z =y =0,

& = ¥ 8@ g =

p= gl Al 6 = atan2(r,y) not atan2(y, )

True/False.
The values of 7, , z are uniquely defined by the location of P. True/False.

(f) The variables r and # may be used to describe the motion of a particle P that is constrained to

a flat horizontal circular plate. What location of P would cause  to be undefined?
Result:

5.20 Cylindrical coordinates and vector differentiation via definition. (Section 6.3).
Referring to Homework 5.19, use the definition of a vector derivative [equation (6.3)] to find the
time-derivative in N of p and express it in terms of r, 6, z, r, 0, # and Ty, ny, n,. Then, use the
rotation table to re-express your result in terms of ay, ay, a,.
Result: Ndﬁ

@ - L Joc+ | |25 + fils,
= rfa; + 78, + Z48,
N ;=

The expression for —mE is simpler when it is expressed in terms of (1, Ty, 1,) / (Ax, Ay, a;).
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5.21 Cylindrical coordinates and vector differentiation via angular velocity
This problem introduces an efficient method for differentiating the vector p of Homework 5.20.

(a)

(b)

Calculate the time-derivative in A of p, and express it in terms of 7, 0, Z and a,, ay, a,.

Result: Adf) R R
1327’5.) +Z§z = "a? = fay + 23.3
N i A L8
_dl? —% (refer to your results in Homework 5.20 and fill in the blank with = or # ).

(c) When the orientation of a reference frame A in a reference frame N changes in such a way that

(e)

there exists a unit vector whose orientation in both A and NV is independent of time £, then A is
said to have a simple angular velocity in N. Referring to the figure in Homework 5.19, find
two unit vectors that are fized in both A and N.

Result: sl
Nip g : ,
Calculate c(iitp with the golden rule for vector differentiation (show below) in conjunction
with the fact that A’s angular velocity in N is NoA = -0a,.
Result: qu Adﬂ
B R g = B + By + 28,

dt  dt

Compared to the definition of vector differentiation in Homework 5.20, the golden rule for
N ;-
vector differentiation is an easier/harder way to calculate ip

5.22 Spherical coordinates, position, and orientation
The following figure shows a baseball P moving in a reference frame N. Right-handed orthogonal
unit vectors My, Oy, 0, are fixed in N as shown. P’s location from point N, (a point fixed in N) can
be specified with spherical coordinates, consisting of:>

e p, the distance between N, and P.
e 0, the 0, measure of the angle from &, to ny, where a, points from N, to point Q.

Point () traces out the projection of /? onto the plane perpendicular to i, and passing through Ni.

e ¢, the angle between 1, and P’s position vector from N,.

- . . i
b, Right-handed sets of orthogonal unit vectors
ay, ay, a, and by, by, b, are fixed in reference
frames A and B, respectively.

e b, points from N, to P
e b, = &,
e by, = b, x by

e a, points from N, to @

=)
ol

e 3, points vertically upward (a, =
e a, = ay X ay
p=0 r<O<m

(a) The magnitude of b, changes/stays constant with time.

The direction of b, in N changes/stays constant with time.
The direction of a, in N changes/stays constant with time.

% Assume that p, @, ¢ are variables that depend on time .
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(b) Draw ay, ay, a, and Ny, ny, 0, in a geometrically helpful way to form the ®R™ rotation table.

| ()

Similarly, draw by, by, b, and &y, a,, 8, to facilitate forming the "R® rotation table.

Next, use matrix multiplication to form the PR™ rotation tables.

Attempt to draw a 3D picture to form the PR™ rotation table directly from the picture and
geometry. It is easier/harder (circle one) to multiply matrices to form the PR table rather
than to draw a 3D picture and use geometry to form PR™.

Result:
y ST TS oS TTTTTTTTTTt ' P ' 7 e i '
' . ' ' ' 1
: - i ] :
1 ! 1 ' I !
. o 1 } 1
\ T \ ‘ i
1 ! 1 ! | |
1 ! i ' | |
1 1 1 ! | L
' ! | ! | l
' ' | ' : ]
' | ' ' i |
' ! 1 ! ' 1
| o | : :
e | i fi, f. CR*|a & a, "R* | Ay i, i,

ay b b

ay By S\ sin(#) cos(¢)

a, b, b, | sin(f) sin(¢)  cos(f) sin(¢)

By inspection, express P (the position of P from point N,) in terms of p, 8, ¢, and by, by, b, and
then use the rotation table to express p in terms of p, 0, ¢, and ny, ny, n,.

Result: -~ 3 =
P = pb, p= ny +

i, + pcos(@) i,
In view of your previous expressions for p, it is clear that p is a vector function of p/8/¢ [circle
the correct variable(s)] in B whereas p is a vector function of p/8/¢ in N.

Alternately, the Cartesian coordinates x, y, z locate P from N, as P = zny +yny + z1,.
Express x, y, and 2 in terms of p, 6, and ¢.

Teselis x = psin(f) sin(¢o) T = z = p cos(¢)
Express p, 0, ¢ interms of x, y, z and calculate p, 0, @ when x =0, y =0, and z = 1. Note:

The atan2 function is described in Section 1.5.4 and is undefined if o =y = 0.

Result: +\/ 5 5 5 5 ;
p = T + -+ & = atan (11,, y) D = d(.()b(\/?ﬂ—_z—ﬁ)

p=1 o =7 6= 0°

The motion of a particle P that is tied by a 2 m string to N, can be described with the two angles
6 and ¢. Assuming n, is vertically upward, what location of P is likely to be encountered
during the motion of P in N which would cause @ to be undefined?

Result: P will likely pass directly below N, (or come to rest there), where 6 is undefined.
Also, P may pass above N, where 6 is undefined.

Assuming 1, is horizontally right, what locations of P cause 6 to be undefined??
Result: If P passes directly to the right or left of Ny, 8 is undefined.

*The motion of P in N can be described without “singularities” by using the Cartesian Coordinates z, y, z and imposing
the configuration constraint z° +14° + 2% = 4 m?. The idea of using additional coordinates to avoid singularities is central
to understanding the use of four Euler parameters to describe the general 8D orientation of a rigid body in space.
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5.23 Spherical coordinates and vector differentiation via definition. (Section 6.3).

(a) Referring to Homework 5.22, use the definition of a vector derivative [equation (6.3)] to find the
time-derivative in N of p and express it in terms of p, 6, ¢, p, 0, ¢, and 1, Ny, 1,.
Result: ﬁ”t

"ap - ; P
?tp— = [ﬁ sin(@) sin(@) + p cos(@) sin(p) 0 + p sin(f) cos(o) qS] n, @. VE
+ n,
- n,
N Nis P
(b) Calculate d—f by using the "RP rotation table to express —J; 0 terms of by, by, b, and then
doing laborious trigonometric simplifications. (Attempt this until it is clear how laborious this is.)
Result: Ndf) L o R

—

(¢) The expression for %E is simpler when expressed in terms of (b, by, b,) / (ny, ny, 1n,).

5.24 Spherical coordinates and vector differentiation via angular velocity.

(a) Inspect the figure to determine P’s position vector from Ng. ® t ? NP -
Calculate p’s time-derivative in B. Express results in terms of B By B ti/ 5 '/'? o
Results: N Bdf) N . iy

P = b, ) = / e 8 i _

(b) Given below are A’s angular velocity in N and B’s angular velocity in"A. i G
Complete the angular velocity addition theorem (below) to find M, B, 4
Result:

Mot = -0a, @” = - b, A

(¢) Use the golden rule for vector differentiation (shown below-left) to
calculate the time-derivative of p in IN. Express results in terms of by, by, b,.

Result: Vo B N . % & n
B _ 68 + "B x p L = psin(@) by + by 4 ab,g
dt dt ,
(d) Relative to your work using the definition of vector differentiation in Homework 5.23b,

N
the golden rule for vector differentiation is an easier /harder way to calculate —éﬂ%

Courtesy USGS. Spherical coordinates help prdict river flow and bank erosion on spherical Earth

Homework 5: Vector differentiation
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i Homework 6. Chapter 7.
4 Angular velocity and angular acceleration

6.1 FE/EIT Review — Motion graph: [T = o = w = g1

The following wind turbine generates  Measures of the wind turbine’s angular acceleration o,

electricity from time-dependent acrody-  angular velocity w, and angle # are governed by

namic wind forces. The wind creates a

torque modeled as T =20 Xm 4 ¢ T = la a = W w = 4
q } - sec : (2D) ) dt (2D) dt

where I = 80 kgm? is the turbine’s relevant moment of
: . : 5 cad ; d o )
inertia.  Graph o in 5, w in 27, and @ in rad for
0 <t <8sec. Use initial values of w =0 and 0 = 0.

45

0 (l‘;ld) e
kdl (0] (mdiseg;)
o (rad/sec”) roeeeee

35 r

®30~

4 6 8 10
time (seconds)

=1
(%]

6.2 Drawing a reference frame and unit vector bases. (Section 7.2).
Draw a reference frame or rigid body B shaped like a uniform-density doughnut (having a hole).
Draw a right-handed orthogonal bases fixed in B having unit vectors EX, By, gz.
Draw a different right-handed orthogonal bases fixed in B with unit vectors Sl, Bg, Bg,
Draw a properly located center of mass symbol “ and label this point as Bepy,.
Draw a different point B, fixed on B.

6.3 Notation, words, and pictures for rotation matrices, angular velocity, angular acceleration.

5 . . N—=B . - - B . .
PR* — Description (words) @" — Description (words) | “@&"” — Description (words)
. - N 3 N=B
R* — draw b and a w~ —draw B and N a —draw B and N
l__——_"_'_—__________"'] I______—-_—__________] | et TSR S T S |
! 1 ! ]! I
! 1 | 1! I
I 1 ! I ! !
! I ! P! 1
I i ] Vo |
I 1 ! ! ! !
! I ! P! 1
! I ! P! !
I | I ]! I
! I ! P! i
Vs i e e e g a R S 5 R B et G 2

6.4 Definitions of angular velocity. (Section 7.3.6).

The definition of angular velocity of @ 2 0k isa functional operational definition, i.e., in general,
it is useful for calculating angular velocity and proving its properties (2D or 3D). True/False
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