5.23 Spherical coordinates and vector differentiation via definition. (Section 6.3).

5.24 Spherical coordinates and vector differentiation via angular velocity.

{(a) Referring to Homework 5.22, use the definition of a vector derivative fequation (6. 3)] to find the
time-derivative in NV of P and express it in terms of p, 8, ¢, p, 6 qS, and ny, B, 1.

Result: .
% = [,6 sin(0) sin(¢) + p cos(0) sin(¢) 6 + p sin(f) cos(4) ‘15] T @.
+ : _. R . R TR R a, N,
4o n, /

Ay

(b) Calculate by using the "RP rotation table to express _dz‘? in terms of by, by, b, and then

doing laborious trigonometric simplifications. (Attempt this until it is clear how laborious this is.)

Result: Ndﬁ L~ .o~ L~

N ~
(c} The expression for —giB is simpler when expressed in terms of (by, by, b,) / (R, Hy, 0;).

(a) Inspect the figure to determine P’s position vector from N,,.
Calculate P’s time-derivative in B. Express results in terms of by, by, b..
. B,
Results: L3 @ _
P=. b dt )
. . By
{b) Given below are A's angular velocity in N and B’s angular velocity in"A.

Complete the angular velocity addition theorem (below) to find No®?

Result: _ e
NE}BZNC?JA-I—%B: : az+

oA _ 3, AP = 4,
(c} Use the golden rule for vector differentiation (shown below-left) to
calculate the time—deriva.tive of p in N. Express results in terms of by, by, b..

Result: N B Nip T e
Just Calculate! d—f = df + M® X p d—f p sin(¢) 8{bx + by
(d) Relative to the definition of vector differentiation in Homework 5.23b, N

the golden rule for vector differentiation is an easier/harder way to calculate 'g'tE
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Homework 6. Chapter 7.

Angular velocity and angular acceleration

6.1 FE/EIT Review ~ Motion graph: |T = o = w = 4]

A wind turbine generates electricc Measures of the wind turbine’s angular acceleration o
ity from time-dependent aerodynamic angular velocity w, and angle ¢ are related by

wind forces. The wind creates a torque
modeled as T =20 N 4 ¢ T =Ta azcii—“t’ w = 4@

sec (2D) (zp) (it

1

where I = 80 kgm? is the relevant moment of inertia.
Graph o in g:f[g, w in %, and @ inrad for 0 <% < 10 sec.
Use initial values (i.e, valuesat t=0) of w =0 and &= 0.

45

: : 0 {rad) we——
40 r @ (rditg) e |
: >4 {mdlscc) arimine

o 30 . - - .

25 foo i . T L e e
=}

0 o Y T .

0 2 4 [ 8 10
time (seconds)

6.2 Drawing a reference frame and unit vector bases. (Section 7.2)

Draw a reference frame or rigid body B, shaped like a unlformwdensmy doughnut (having a hole).
Draw a right-handed orthogonal bases fixed in B having unit vectors bx, b b

Draw a different right-handed orthogonal bases fixed in B with unit vectors bl, bg, b3

Draw a properly located center of mass symbol §l. and label this point as Bgp,.
Draw a point B, fixed on B, at a location different than Bem.

6.3 Words and pictures for PR, "@® , Y&P. (Chapters 5 and 7)

N

"R* — Description (words) &% — Description (words) | "&” — Description {words)

Draw band a Draw B and NV

6.4 Definitions of angular velocity. (Section 7.3.3).
The definition of angular velocity of @ = #k is a functional operational definition, i.e., in general,
it is useful for calculating angular velocity and proving its properties (2D or 3D). True /False
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6.5 Concept: What objects have a unique angular velocity/acceleration? (Sections 7.3, 7.4).

Mo, the angular velocity of an object S in a reference frame N is to be determined.

In general and without ambiguity, S could be a (circle @il appropriate objects):

Vector Set of Points Rigid Body
Matrix Particle Flexible Body

Real number Point Reference Frame Mass center of a set of particles

Mass center of a rigid body
Set of flexible bodies

Orthogonal unit basis  Set of Particles  Set of Rigid bodies System of particles and bodies

Repeat for “@°, the angular acceleration of an object S in a reference frame N |box appropriate objects].

6.6 Concepts: Angular velocity and unit vector directions. (Section 7.3 and Hw 6.11).

Right-handed orthogonal unit vectors by, Sy, b, are fixed in a rigid ’44(-4.5‘
body B and B’s angular velocity in a reference frame A is (for all time)

AEJB = 23;{ "I" 3By '+" OBZ

Statement: Since the b, component of B’s angular velocity in A is 0,

—~

b,’s direction does not change in A. True/False. (circle one);\
Provide equation(s) that test whether or not the direction of b, changes in A.

: TR S Hint: A mathematical test of whether the _
Equation: - N I o scalar variable y changes is %’% Zo.

6.7 What is a reference frame, rigid body, and orthogonal basis? (Sections 4.1 and 7.2)

# Statement (regard “rigid body’ as a massive 2D or 3D rigid object) True or False
a A reference frame has all the attributes of a rigid body. True/False
b A rigid body has all the attributes of a reference frame. True/False
¢ A reference frame with time-invariant distributed mass is a rigid body. True/False
d A massless rigid object is a reference frame. True/False
¢ The definition of a reference frame implies a sense of time. True/False
f A rigid body B may have an angular velocity in a reference frame N. True/False
g A point @ has a uniquely-defined angular velocity in a referen?f: frja:meAN . True/False
h  The reference frame B implies unique orthogonal unit vectors by, by, b,. True/False
i The right-handed orthogonal unit vectors Ex, By, b, imply a unique reference frame. True/False
1 The reference frame B implies & unique rigid frame. True/False
kA rigid frame with origin B, and basis SX, Ey, Bz implies a unique reference frame. True galse
R

6.8 Concept: Reference frames and vector bases. (Sections 4.1 and 7.2) 2: ‘\d'

Consider 3 distinct non-collinear points P, P», P3 and the non-zero distances da 3

d12, doa, da1 between them. In general, determine if each object below can

always be constructed from Py, Py, P3 under the listed condition. By dy "

For each “Yes” answer, draw the object. g& - g
Condition Object to be constructed Object can be constructed? | If Yes, Draw:
dyz, dog, d31 are constant Vector basis that spans 3D space Yes/No

d1z, a3, ds; are variable  Vector basis that spans 3D space Yes/No

d12, ta3, ds; are constant Right-handed, orthogonal, unitary basis Yes/No

ta, dag, dg) are variable  Right-handed, orthogonal, unitary basis Yes/No

dy2, das, ds; are constant  Unique reference frame Yes/No

dy2, das, dy; arve variable  Unique reference frame Yes/No

6.9 Concepts: What objects have a uniquely-defined angular velocity? (Section 7.3).

# For: “&% (B's angular velocity in A) Object B Object A

a. It is possible to find the angular velocity of a point ina reference frame. True/False
b. It is possible to find the angular velocity of a rigid body ina particle. True/False
¢. It is possible to find the angular velocity of a rigid body ina reference frame. True/False
d. It is possible to find the angular velocity of s reference frame ina rigid body. True/False
e. It is possible to find the angular velocity of a  reference frame in a flexible body. True/False
f. It is possible to find the angular velocity of a  flexible body ina reference frame. True/False

6.10 Rotational kinematics of a fire ladder. (Sections 7.8.3, 7.3.5, 7.3.6).

The following figure shows a fire truck chassis A traveling at constant speed in straight-line motion
on Farth (A does not rotate relative to Earth). Earth is a Newtonian reference frame N.
A rigid hub B is connected to fire truck A by a revolute motor at point B, of B.
A rigid ladder € is connected to hub B by a revolute motor at point C, of C .
A fire-fighter @ (modeled as a particle of mass m) climbs ladder C. -
Right-handed orthogonal unit vectors %, a,, 8,
by, Sy, Ez; Cx, Cy, Cy; are fixed in A, B, C, with:
* 3, pointing forward on the fire truck
e 8y vertically-upward and from B, to Co
. Ey =14, parallel to the axis of the
revolute motor that connects B and A
. Ez =, parallel to the axis of the Ao
revolute motor that connects B and ¢
o T, directed from C, to & (along C’s long axis)

Note: Visualize C’s “Body yz” (or “Space zy”) rotation sequence in N (e.g., with a ruler).

cRb
Quantity Symbol Type
b, measure of B’s angular velocity in A4 Wpy Constant,
Angle from b, to €, with €, sense g Variable

(a) Complete the previous °RP rotation table (to the right).
Note: °R® is unnecessary for the remainder of this problem.

B —~

(b) Clarify the process to determine G‘Jc, then express it in terms of gx, by, Bz. (Section 7.8.3).

» (s angular velocity in B is simple since . is fixed in both and

. is the time-derivative of the angle between - and

* The sign ( 4 ) was determined using the - . -hand rule (sweep from to ).
L BLTJG =

—~

{c) B’s angular velocity in A is known to be a simple angular velocity of 4% = wp by
because by is a vector fixed in both - and . .
e b,.

+ . by + b,

(d) Form C’s angular velocity in N and express it in terms of Bx, b
Result: NE}C _ 5 + > E‘} + .. B =.
(7.4)

(¢) When both wp and § are constant, Y& = §. True/False,

(=]}
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(f) Write the definition for C’s angular acceleration in N and form VaC. {Sections 7.4, 7.3).
Result: G L~ N
NoC A P -
[4 4 = Eldnihenann NO.’C = wpg 7] bx + g bz
(7.8) iy (7.1)
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6.11 Concept: Angular velocity, angular acceleration, and a fixed vector.

The figure to the right shows a rigid body B in a reference
frame A. Orthogonal unit vectors by, by, b, are fixed in B.
The following questions relate to B’s angular velocity in A.

(a) Circle those expressions for 4% for which b, remains constant (fixed) in A.

Complete the calculation below that helps verify your answer.

48 = 3b,  “BP = (3+1)b,  “BP = 3b, + 4b,

A~
db, i x
dit (7.1) .

(b) Circle the expressions for 5 that remain constant (fixed) in A.

Complete the calculation below that helps verify your answer.
P = 3b, AP = (3+1) b, % = 3b, + 4b,

4458
dt  {7.1)

(c) Circle those expressions that result in B’s angular acceleration in A being non-zero.

4P = 3b,  “BF = (3+1)b, 48 = 3b, + 4b,

6.12 Theorems: Rotation matrices R, angular velocity @, angular acceleration a?

o

P = 4b, + tb,

(Section 7.3 and Hw 6.6).

(Section 7.4).

Theorem True or false
tDe;;;rm'inletx'vhetll_lgrfor not ealc:lsl Dtheo:am apd _ agb 4 bpe , opd True/False
o the right is valid for genera motion D 5 Bac D .
of reference frames A, B, C, and D. BP =P 4+ B+ W True/ False
B = “af + %¢ + %P True/False

6.13 Alternate formula for angular acceleration. (Section 7.3).
N N_. B, N~B
NzB a _d NzB _ d W
Prove "o T can also be calculated as “a@” = —

6.14 Concepts: Angular acceleration for general 3D motion. (Sections 7.3, 7.4).

Determine whether or not each of the following equations generally apply to the angular acceleration

& of reference frames A, B, and C in general 3D motion.

6.15 Vector differentiation concepts “v=wr”. (Section 7.3).

Point @ is fixed on a rigid body B. Point N, is fixed in a reference
frame N and does not move on B. Complete the following proof that
shows how ¥ (Q's velocity in N) can be written in terms of “@® (B’s
angular velocity in N) and ¥ (Q’s position vector from N,).

Mathematical statement Reasoning (explain each step in the proof with a brief phrase)
. a Mg s , o .
v = o Definition of @’s velocity in IV
= P x 7

6.16 Angular velocity/acceleration of precessing, nutating, spinning, gyro. (Sections 7.8.3, 7.8.5, 7.4).

The following figure shows a gyro moving in a reference frame N. The gyro’s cyhndrlcal rotor C is
supported in bearings by a gimbal B, so that C has a simple angular velocity in B of Z&% = we b,
Gimbal B is set in N so one point of B is always coincident with point N, fixed in N.

Right-handed sets of 01thogonal unit vectors iy, fiy, T;
dy, Ay, 8,; and bx, by, bz, are fixed in reference frames
N, .f_l\, and B, respectively, with 1n, vertically-upward
and b, directed along the rotor’s axis and pointing from
Ny to Cem (C's center of mass).

The orientation of A in IV is determined by initially
setting 8; = M (i=xy,2) and then subjecting A to a
right-handed rotation characterized by -83a,. Hence
Yot = 43,
(7.2)
Gimbal B’s orientation in A is found by initially setting _
b; = 8; (i=xy,2) and then subjecting B to a right-
handed rotation characterized by -¢ by.
Note: Simplify this problem by creating the "B* rotation table.

(a) Visualize (C’s orientation in N (rotate a pen C in proper sequence: first ~%;, then ~¢8x, then we Sz).l

(b} Form B and C’s angular velocity in N (in terms of 8, ¢, 8, ¢, we, and B, by, b.).

Result: _, . -
v P = B o+ @ = by + by, + -cos(¢)éb,
(7.4) -
N-C . - _ -~ . .~ e o~
w () W + W = by + sin(¢)fby, + o by

-

(c) Express B’s angular acceleration in NV in terms of 8, 4, 4, ¢, ¢, éﬂ, we, we, and Ex, Vs EZ.
Result: -~ o~ . R .. RS
b " = -gbe + [cos(¢)¢9 + sin(¢) 9] b, + [sin(¢)¢9 — cos(¢) 9] b,

!This “Body zxz” rotation sequence of C in N is equivalent to a “Space zxz” rotation sequence.

Ag An D
Az B d A=C A= B B=C AsB _ B=C
= = x " True/False
a —— True/False G a + ‘a + ‘W /
Ay B A Az B A
A=B d -5 -‘dw
= —— True/False 8" = —I True/False
C; AB Cy A=B
AR d AnB d AsC _ A=B Ty
= = ue/False
o 7 True/False & —g— T W xw /
AsB By Ag® Am B % ‘" BaC _, A=B Fal
& = a” = 0 % ue/False
@ —z7— True/False a —— t @ x @ True/
‘a” = %at True/False ‘a® = -fat True/False
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6.17 Rotating disk angular velocity /acceleration (a first step for wheeled vehicles). (Sectlons 7.3.3, 7.3.5).

The figure to the right shows a thin disk D rotating ?__
on a horizontal plane A (Newtonian reference frame).

Right-handed orthogonal unit vectors &, @y, @, and
dx, dy, d; are fixed in A and D respectively, with 3,
horizontally-right, a, vertically-upward, and d, par-
allel to the disk’s axis.

Dr’s orientation in A is determined by initially set-
ting d; = & (i==x,y,2 and then subjecting D to a
sequence of “body-fixed” right-handed rotations in
A characterized by gy HZ, g, dx, gsdy.

This sequence of three rotations can be separated into three simple rotations as follows.

1. Initially orient right-handed orthogonal unit vectors bx, by, bZ S0 b =8; (i=xy,2 and then
subject B to a right-handed rotation in A characterized by qu 8,.

2. Initially orient right-handed orthogonal unit vectors ¢, €y, €, so T = bi (=xy, z) and then
subject C to a right-handed rotation in B characterized by -q, Bx.

3. Initially orient Ei =T (i=xy,2) and then subject D to a right-handed rotation of gg cy.

Name Description Symbol | Type

Heading angle Angle from 7, to Bx with 13, sense Ju Variable
Lean angle Angle from E to €, with -b, sense qL Variable
Spin angle Angle from €, to d, with +¢, sense ds Variable

{(a) Visualize I’s orientation in A, e. g ., rotate a DVD by the sequence of angles g then ¢ then gs.
Sketch the missing vectors Ty, dx, d on the figure and form the PR® and cRb rotation tables. -
Result: bpa. epb : o

(b) Find D’s angular velomty in A and then express it in terms of €, €y, ;.2

Result: ‘WP = gub, — 408 + ds = -~4L& + |ds—sin(qL)du]E, + COS(QL) qn o

(c) For efficient kinematics, D7 is rewritten B = w, S, + wyCy + w; ¢, where wy, wy, w; are

variables. Form kinematical differential equations relating i, ds, gu t0 wg, Wy, Ws.
W

Result: gL, = “wy ds = wy + tan(qL)w, 90 = Gostay

(d) What value of g, produces an indeterminate value for g, g, or ¢g?
Does this indeterminate value have any physical significance for this problem?
o

Result: gL = . This corresponds to the disk laying flat on the plane.

(e) Using AP — W Cx + wyCy + w,C,, show P and “B° are

D's angular acceleration in A “@° = (0, ~w, 4s)E + WyCy + (wuds +w:)C
% angular velocity in 4 B¢ = W, + (wy—ds)Cy + w.C, = w,C, — tan(g)w:Cy + w:T;

2The MotionGenesis command Express( D.GetAngularVelocity(4), C ) expresses “@” in terms of &, €y, Ca-
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6.18 Optional: Rotating disk angular acceleration in terms of gn, Grs gs. (Sections 7.3, 7.4).
Using “©° from Homework 6. 17b, calculate D’s angular acceleration in A.
Result:

AsD R " R s 1
o = [cos(gr) gu ds—dr] €« + [ds—cos(qr) du dr—sin(qL) Gu)€y + [cos(qr) du—dr ds—sin(qL) dx dr.] S,

4P is shorter when expressed in terms of (4w, 41, 4s) / (ws, wy, wz) .
&P is shorter when expressed in terms of  (§m, dr, §s) / (wa, Wy, Wy)
Note: Lagrange’s equations of motion (Chapter 26) are built on generalized coordinates (e.g. gu, g1, gs) and are usually

less efficient than Kane’s equations of motion (Chapter 25) which are built on generalized speeds (e.g., wz, wy, w:).

6.19 Concept: Vectors, bases, and reference frames. a,
The ﬁguze to the right shows r ight-handed orthogonal unit
vectors 8x, 8y, 8, and bx, by, b fixed in rigid objects A
and B, respectively. The ®RP rotation matrix and B’s
angular velocity in A are shown below where 8y, 65, 64
and wg, wy, w, are time-dependent variables.

bR> | a, a, a,

E" cos(fz) cos(fa)  sin(8s) cos(f:) -+ sin(6:) sin(fy) cos(8s) sin(6,} sin(fs) — sin(8;) cos(8,) cos(6s)
,}3” ~sin(f;) cos(f;) cos(6:) cos(fs) — sin(6,) sin(6,) sin(6;)} sin(0,) cos(f3) + sin(f,) sin(fs) cos(f;)
b, sin(6;) -sin(6:) cos(f;) cos(f,) cos(6,)

AE')B = wmlgx —+ wygy -+ szz

Calculate the time-derivative in reference frame 4 of the vector 8 (given below).
Express your results in terms of whatever symbols and unit vectors simplify your work.
Resuli: (Note: There is a long, medium, and short way to do this problem.)

8§ =1t8, + t*8, + b, + 25,

-

S

dt

o

6.20 3D spin stability (application to Top-gun and Explorer I). (Sections 7.3 and 7.3.2)
The angular momentum principle for a rigid body B in a Newtonian reference frame NN is

e

— NiA M is the moment of all forces on B about By, (B’s center of mass)

22.4) dt | T is B’s angular momentum about By, in N

Right-handed unit vectors BX, gy, B are fixed in Quantity Symbol | Value
B and parallel to B’s principal inertia axes about | B’s moment of inertia for b, Io 1 kgm?®
Bun. M and Bs angular velocity and angular B’s moment of inertia for By L, 2 kgm?
momentum about Bey, in NV are given as B’s moment of inertia for b, I, 3 kgm?
M0 o b, measure of "@” Wy Variable
e = A(lgnores ai-r6315tanci ete). b measure of w, Variable
W = wyby + wyby + w; b, b, measure of % W, Variable
f-’I = Im Wy Ex + Iyy Wy By - Izz Wy Bz Optional: Inertin is explained in Chapters 14 and 16

(a) Starting with the angular momentum principle, show how to differentiate H and form scalar
equations involving wy, wy, w,. Next, solve the scalar equations for w,, Wy, Wy
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= L,ws + (I, —L,)wwy Wy =
. . = .
Result: 0 = L,y + (L= )wsws Wy =
0= .:: SR L:)z — [(I:ng: _Iyy)wywm] /.Izz._'::i.

(b) Using MotionGenesis (or MATLAB® or ...), solve these ODEs for 0 <t < 4 with the initial vaih’g

(¢) The following plots show spin-stability about various axes.

Plot # Initial values Description

Plotl w, =7 w, =0.2 w,=02 Spin about minimum inertia axis
Plot2 w,=02 w,=7 w. = 0.2 Spin about intermediate inertia axis
Plot3 w,=02 w,=02 w,=7 Spin about maximum inertia axis

Using the following spinning book pictures, experimentally spin a book about each of its thre
axes (wrap rubber bands about the book so it stays closed) and use the experiment to complete the las

column in the previous table with the word unstable or neutral or stable. with:
e Unstable: w,, w,, w, have large changes.
s Neutral: W, Wy, w; have small changes that do not increase or decrease much.

¢ Stable:

Spin about by (minimum axis)

We, Wy, w, have small changes that decrease to zero.

Spln about by (1ntermed1ate a.)-:ls)

O = W W & W B o

Ghbhlhbbecwunwenng
T — T .

4 &5 1 15 2 25 3 s 4 a

Note: This problem helps explain why “flat spin” is dangerous for aircraft (it is difficult to pull—- !
about the maximum axis - featured in the Tom Cruise movie “Top-Gun”), why Explorer I (the first U. S -sateihte
tumbled unstably on its first orbit, and why tennis racquets spin as they do.

3Numerical solution of ODEs at: www.MotionGenesis.com = Get Started = Solve Couplec_l .1“”'-order ODES
Analytical solution to these coupled nonlinear ODEs: Pgs. 187-195 of Spacecraft Dynamics, by Kane,. Likins, and Le\fu.ns_on
McGraw-Hill, New York, 1985. Stability analysis of ODEs: Control, Vibrations and Design of Dynamic Systems by Mitiguy.

. i tion
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6.21 T Angular velocity concepts (2D motion)

The following figures show a point ) moving in a plane N. Point N, is fixed in N. The left-figure
shows @ moving clockwise with speed 12 on a circle of radius 4 (the circle is fixed in N and centered at
N,). The right-figure shows ¢ moving with a speed of 12 on a horizontal line that is a distance 4
from N,. Box the following true statements about a uniquely-defined angular velocity for ().

@’s angular velocity in N is 0.

s angular velocity in NV is a L NON-2ero vector.
@’s angular velocity in N is =4

()’s angular velocity in N does not exist.

3 I ? }<-X(t)—>| __X=y=m

Q

@Q’s angular velocity in N is 0.

(2’s angular velocity in NV is a DON-Zero vector.
@’s angular velocity in N is &.

@’s angular velocity in N does not exist.

|

1

i

I

i
oN,
. 1. One can create a right-handed orthogonal unitary basis A consisting of a, &y, a, with a, always

directed from N, to @ and &, outward normal to plane N. Calculate a numerical value for Y?
for each situation below (Q on circle and @ on horizontal line).

i‘fg‘“ &

Numerical solution:
2 N{?JA _

%QT—-O—-F e P2 2 Numerical solution when z = 3:

! Q
4 Ngh = -1.923,

Yoy,

For both situations, does @ always exist, and if so, is it continuous when Q gradually decreases
speed and reverses direction Yes/No. Explain:

2. A 27 possibility is to define a right-handed or thogonal vector basis B consisting of bx, by, b

with b always in the du ection of @’s velocity in N and b, outward normal to N. Calculate a
numerical value for “&® for each situation {@ on circle and ¢} on horizontal line).

& ==

i NE:JB — 4 NE’_’B _
ton,

For both situations, does NaP always exist, and if so, is it continuous When Q gradually decreases

speed and reverses direction Yes/No. Explain: :

Numerical solution: Numerical solution:

x ¥ - . N Nig .
where T is @’s position vector from N, and v £ —%—I—' is

. F

3. A 39 possibility is & = =

¥

()’s velocity in N. For both situations (Q on circle and @ on horizontal line), this 3" possibility for &
corresponds to N / N / Neither / Both (circle one).

~

L FEX ¥ . ey s . .
Note: Although & = ——— is found in textbooks and websites, it is a poor definition for angular velocity.
F

Related information is provided in Homework 6.27.
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6.22 Optional: Angular velocity and rotation matrices. (Sections 7.3.8 and 7.3.9)
The orientation of a rigid body B in a reference frame N is specified by j i
the following rotation table that relates the right-handed orthogonal
unit vectors by, by, b, fixed in B with the right-handed orthogonal L

. PN . . =~ N= B
unit vectors Iy, fy, H, fixed in N. Find the by measure of "w™.°

1§ you use MotionGenesis, the Explicit() or Expand() commands simplify results.

bRn i, n, i, _
by | cos(g,) cos(g.) sin(g.) cos(g.) + sin{g.) sin(g,) cos(g.) sin(g:) sin(g.) — sin(q,) cos(qm) cos(q-)
By |sin(g.) cos(g,) cos(a.) cos(a.) — sin(g.) sin(g,) sin(g.)  sin(aa) cos(a:) + sin(g,) sin(g.) cos(g

b, | sin(g) “sin(gz) cos(gy) cos(gz) cos(g,)
Result: o
NoP = [sin(g.) gy + cos{gy) cos(q:) G) by + R by

6.23 Textbook definitions of angular velocity. (Section 7.3)
Famed dynamicist Thomas Kane called angular velocity “one of the most misunderstood co
cepts in kinematics.” Report an Internet and physics/engineering textbook definition of angulm
velocity and determine if the quantities appearing in the definition are rigorously deﬁned
whether they are generally applicable or only apply for simple angular velocity (described in Section 7.3.3)
Note: A definition should be able to prove important theorems [such as the angular velocity addition theorem of eciu&-.
tion {7.4) and the golden rule for vector differentiation in equation (7.1)] and allow for angular velocity caIc'ulz'z.iti.an__s

6.28

Definition Rigorously defined Works for 3D kinematics?
Internet: | Record equation/definition Yes/No Yes/No
Textbook: | ‘Record equation/definition Yes/No Yes/No

6.24 Angular acceleration addition theorem. (Sections 7.3, 7.3.5, 7.4, 7.4.1)

Use the angular velocity addition theorem and the defini- NzB NzA | AzB | NpA
tion of angular acceleration to prove equation (7.10): {7.10) : '

6.25 Example of angular velocity/acceleration addition theorem (Sections 7.3.5,,

The following table gives the angular velocities/accelerations of A in N and B in A
stant of time. Calculate B’s angular velocity in N and B’s angular acceleration i m

Mgt = 23, g4 = 123,

WP = 43, ‘af = 135,

MNP =25, - 4 Na® = 123, + 138, —
X R Y Y

6.26 Optional: Prove Bz

After showing @4 =
Subsequently, prove Bt =

A = 8P and Pa? = ‘8% for reference frames A and B
0, use the angular velocity addition theorem to prove Bpd =
A A= B
o,

6.27 Angular velocity @ in terms of velocity ¥ and position ¥ (2D motion)

The figure to the right shows a rigid body B rotating in a reference .
frame N. Point N, is fixed on N and is stationary (does not move) on j @

B. Point ¢ moves on B. ¥ is Q’s position vector from N,.

Knowing ¥ (Q’s velocity in N) is the time-derivative in N of ¥,
T

o N~B = g}
calculate ¥ in terms of “@" (B's angular velocity in N), ¥, and R
Result: N, :

. a df
V= — =
dt

N‘DB

Rearrange the previous result to form an expression for NoP in terms of ¥ that is valid when
is perpendicular to ¥ (e.g., when B has a simple angular velocity in IV in a plane perpendicular to ¥).4
Simplify this expression for the situation when @ is fixed on B.

Result: (_, Bz )

v — = -
Q moving on B: @f = _ 3 Q fixed on B: &P = r_‘ X _,v
(2D) R (2zD) T - T

Note: These specialized 21D expressions for “@® also depend on P being in the plane passing through ¢ and perpen-

dicular to NEJ‘B, i.e., P is not an arbitrary point on the revolute-joint’s axes connecting B to M.

Optional: Inverted pendulum on a rotating disk &, @ (Sections 7.3.3, 7.3.5, 7.3.6)

The figure to the right shows a thin rigid inverted pen-
dulum B connected to a rigid disk A by a revolute joint
at point Ap. The torque motor at point NV, rotates A in
a Newtonian reference frame N. Right-handed orthog-
onal sets of unit vectors ¥, My, i,, Ay, Ay, 8,, and
Bx, By, Bz are fixed in NV, A, B, respectively, with:

e T, horizontally-right

o 1, = ay vertically-upward and parallel to A’s axis of rotation in N

o 4, = bx parallel to B’s axis of rotation in A (parallel to the line connecting N, and Ag)
e by directed from Apg to the distal end of B (along B's long axis)

Quantity Symbol | Type
Angle from Ti, to &, with 41, sense a4 Variable
Angle from @, to By with +a, sense (ie., “pendulum” angle) g5 Variable

Determine B’s angular velocity in N in terms of ¢4, ¢p, and &y, 8y, &,.
Determine B’s angular acceleration in N in terms of ¢4, a4, 48, ¢B, and 8y, 8y, &,.

Result: n. - : o~ -, L~ ~ ~
% = A+ F Maf = o a5 + a + . &

“One way to solve for & is to pre-cross multiply your equation for ¥ with ¥ and rearrange.
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6.29 Optional: Unit vectors tangent and normal to a 2D-curve and the definition of - |
angular velocity (i.e., angular velocity and curvilinear coordinates).

The figure to the right shows an arbitrary point P of a planar curve that is fixed in a referel e _fr
A. Also shown are P’s position at two values of x, namely =2 and z =2 - dz. '

Fixed in reference frame A are
a point A, and right-handed or- ¥ .
thogonal unit vectors &y, &y, 8, 4
with 8y horizontally-right, @,
vertically-upward, and &, perpen- % .
dicular to the planar curve. @-)- - - e dx e m s e
(a) Draw the vector “dp £ P(Z-dz) — P(Z) so its tip ends at the tip of p(:n +d
In the himit as drx—0, it appears A4dp is tangent/normal to the curve.

{b) P’s p081t10n vector from A, can be written in terms of scalar measures x a.nd y as sh""

Result: B dp

I OL RO T dsm;;:

(¢) A rigid basis B consists of right-handed orthogonal unit vectors with:
(sense determined by +dz), b, normal to the curve, and b, =4, Form the bpa rota,tlo _
relating Bx, By, b, to &, 8y, 8, in terms of %, %% and 7 (defined below).

Optional: Calculate °R* when s ==z, y{z)=1+¢ ¥ sin(z), and = =0.

Result:

bRa él-x ay ﬁz bRa.

. 1 by T%% b
= S R p .
J@r@  u |- 3
b “

(d) Show B’s angular velocity in A can be expressed as given below. Sk
When P moves down a straight hill inclined at 45°, %% =0 True/False.

Optional: Calculate “@" when y(z)=14e > “sin(z), £=0, and &=1. C
) Ez AL_JB = =L}, .z'"

Result: Ty
%Bzér(% by , d

: Py
{e) Calculate B’s angular acceleration in A in terms of =, 7, dw %?i and Es% L
Result: '

3
. .. dy d2 dz dy R d3m de d y)] ~
&t = |(572 =%y YT LTI
¢z [(ST +28r7) ( ds ds? + ds ds? o ds ds® ds ds®

Calculating the vector tangent, vector principal normal, vector binormal, and wvector radius of curvalur
of a general 3D space curve is more complicated. The Serret-Frenet formulas for the position of a point P ona:
space curve as a function of the are-length are given in [35, pg. 263] and [37, pgs. 42-47]. More general formulas fn_jr-.
the position of P as a function of any variable are given in [37, pgs. 29-42]. More information on angular velocity,”

curvilinear coordinates, and differential geometry is in [42] and [38].

5% may be regarded as an independent variable or depend on another scalar variable. Hence s may stand for z, time,"

measure along the curve, etc. 7
G5 and (%u) oL 5

Homework 6: Angular velocity/acceleration -

5The chain rule for differentiation [equation (1.31)] is useful to show - ( T) =
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Homework 7. Chapters 8, 9.
Vector bases and rotation matrices II

7.1 Clinical determination of pelvis orientation (described in Section 8.3).
The following figures shows two sets of right-handed orthogonal unit vectors, namely EX, gy, Bz fixed
in a rigid body B (e.g., a pelvis) and @, 3y, 8, fixed in a reference frame A (e.g., a gait laboratory).
The orientation of B in A can be described mathematically by first 74
setting b; =8 (i =x,y,2) and then subjecting B to successive right-
handed rotations relative to A. Two such sequences are:

Name Rotation sequence order
TOR 0.b, 8, b, 6, b,
ROT  6.b, B,by 6. by

This problem shows rotation sequence order affects the rotation
matrix and shows the significant difference between mathematically-
defined rotation angles (e.g., TOR or ROT) and clinically-defined angles.

(a) Form the PR? rotation tables sequences.!

b a, a, A,
TOR ?x cosf; cosf, + sind, sinf, sinf, sind, cosf, sind, sinf, cosd, — sinf, cosd,
b, | sind, sinf, cosd, — siné, cosh. cosh, cosb, sinb; sinf, -+ sinf, cos b, cosb,
Bz sin 8, cosf, -sin g, cosf, cosf,
bR A, a, a,
ROT gx cosf; cosf, — sinf, sinb, sinf, siné, cosf, -+ sind, sind, cosh, -sinf, cosl,
By -sin 8, cosd, cos B, cosb, sinf,
B,, sinf, cosd, + sinf, sinfd. cosf, siné, sinf, — sinf, cosld, cosf, cosl, cosl,

The MotionGenesis command for TOR is B.Rotate(A, BodyYXZ, 6., fo, ). ROT uses B.Rotate(A, BodyZXY, O, 6, 0t).
(b) Clinically, the pelvis elevation angle ¢ is defined as the angle of By above the horizontal
plane perpendicular to 8,. Express ¢ in terms of 8,, #,, and 8, first with TOR and then ROT.
Result: [Results simplify by noting acos[sind,] = acos[cos(90°—0,)] = 90° — 4,
TOR successive-rotations: ¢ = 90° — acos (siné, sinfy + sinf, cos Oy cosby)

ROT successive-rotations: ¢ = 90° — acos (sinfl,) (=6, when-90° <6, < 90)

(c) Clinically, the pelvis progression angle v is defined as the angle of Ey behind the vertical
plane perpendicular to 8x. Express ¢ in terms of 8;, 8,, and 8, first with TOR and then ROT.
Result: [Results simplify by noting acos(-z) = 180° — acos(z).]

TOR successive-rotations: % = 90° — acos (sinfy cosf; — sinf, sinfy cosby)

ROT successive-rotations: ¥ = 90° — acos (sin 6y cosf,)

(d) Clinically, the pelvis lean angle v is defined as the angle of Ex below the horizontal plane
perpendicular to a,. Express vy in terms of 8y, 8,, and 6;, first by with TOR and then ROT.

Result:  pyp occessive-rotations: v = 90° — acos (sinf; cosf, — sind, sin b, cosfy)

ROT successive-rotations: v = 90° — acos (sin 6y cos8,)

'Reference: Wren, Tishya, and Mitiguy, Paul, ”A Simple Method to Obtain Consistent and Clinically Meaningful Pelvic
Angles from Euler Angles during Gait Analysis”, Journal of Applied Biomechanics. Vol. 23, No. 3, 2007, pp. 28-223.
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